Abstract
Samples of iron catalysts of various specific surface areas for ammonia synthesis underwent nitriding with ammonia in a tubular reactor where continuous thermogravimetric measurement and measurements of hydrogen concentration in the gaseous phase were simultaneously performed. The nitriding process was performed under atmospheric pressure at 475°C. It was observed that, along with an increase in the mean size of iron nano-crystallites, the minimum nitriding potential (at which the iron nitriding reaction is initiated) of the gaseous phase also increased. The degree of nitriding of the catalyst samples increased with the increase in the mean size of iron crystallites. On the basis of the values of nitriding potential, nano-crystallite size distributions can be determined.
[1] Arabczyk, W. (2005). The state of studies on iron catalyst for the ammonia synthesis. Polish Journal of Chemical Technology, 7, 8–17. Suche in Google Scholar
[2] Arabczyk, W., & Jasińska, I. (2006). The current state of knowledge of iron catalysts used in ammonia synthesis. Przemysł Chemiczny, 85, 130–137. (in Polish) Suche in Google Scholar
[3] Arabczyk, W., Jasińska, I., & Lubkowski, K. (2004). The surface properties of iron catalyst for ammonia synthesis. Reaction Kinetics and Catalysis Letters, 83, 385–392. DOI:10.1023/B:REAC.0000046101.89184.b8. http://dx.doi.org/10.1023/B:REAC.0000046101.89184.b810.1023/B:REAC.0000046101.89184.b8Suche in Google Scholar
[4] Arabczyk, W., & Kałucki, K. (1993). New model of deactivation of iron catalysts for ammonia synthesis. Studies in Surface Science and Catalysis, 75, 2539–2542. DOI: 10.1016/S0167-2991(08)64344-X. http://dx.doi.org/10.1016/S0167-2991(08)64344-X10.1016/S0167-2991(08)64344-XSuche in Google Scholar
[5] Arabczyk, W., Moszyński, D., Narkiewicz, U., Pelka, R., & Podsiadły, M. (2007). Poisoning of iron catalyst by sulfur. Catalysis Today, 124, 43–48. DOI: 10.1016/j.cattod.2007.02.003. http://dx.doi.org/10.1016/j.cattod.2007.02.00310.1016/j.cattod.2007.02.003Suche in Google Scholar
[6] Arabczyk, W., Narkiewicz, U., & Kałucki, K. (1994). Model of active surface of iron catalyst for ammonia synthesis. Vacuum, 45, 267–269. DOI: 10.1016/0042-207X(94)90186-4. http://dx.doi.org/10.1016/0042-207X(94)90186-410.1016/0042-207X(94)90186-4Suche in Google Scholar
[7] Arabczyk, W., Narkiewicz, U., & Moszyński, D. (1999). Doublelayer model of the fused iron catalyst for ammonia synthesis. Langmuir, 15, 5785–5789. DOI: 10.1021/la981132x. http://dx.doi.org/10.1021/la981132x10.1021/la981132xSuche in Google Scholar
[8] Arabczyk, W., & Pelka, R. (2009). Studies of the kinetics of two parallel reactions: ammonia decomposition and nitriding of iron catalyst. Journal of Physical Chemistry A, 113, 411–416. DOI: 10.1021/jp8079759. http://dx.doi.org/10.1021/jp807975910.1021/jp8079759Suche in Google Scholar
[9] Arabczyk, W., & Wróbel, R. (2003). Study of the kinetics of nitriding of nanocrystalline iron using TG and XRD methods. Solid State Phenomena, 94, 185–188. DOI:10.4028/www.scientific.net/SSP.94.185. http://dx.doi.org/10.4028/www.scientific.net/SSP.94.18510.4028/www.scientific.net/SSP.94.185Suche in Google Scholar
[10] Arabczyk, W., Zamłynny, J., & Moszyński, D. (2006). The influence of hydrogen sulphide on the kinetics of ammonia decomposition over a doubly promoted iron catalyst. Polish Journal of Chemistry, 80, 345–350. Suche in Google Scholar
[11] Arabczyk, W., Zamłynny, J., Moszyński, D., & Kałucki, K. (2005). Ammonia decomposition over iron in the presence of water vapor. Polish Journal of Chemistry, 79, 1495–1501. Suche in Google Scholar
[12] Bell, T., Birch, B. J., Korotchenko, V., & Evans, S. P. (1975). Controlled nitriding in ammonia-hydrogen mixtures. In Heat treatment’ 73 (Book no. 163, pp. 51–57). London, UK: The Metals Society. Suche in Google Scholar
[13] Ertl, G. (1991). Elementary steps in ammonia synthesis: the surface science approach. In J. R. Jennings (Ed.), Catalytic ammonia synthesis fundamentals and practice (pp. 109–131). New York, NY, USA: Plenum Press. Suche in Google Scholar
[14] Ertl, G. (1989). Physical characterization of industrial catalysts: The mechanism of ammonia synthesis. Studies in Surface Science and Catalysis, 44, 315–320. DOI: 10.1016/S0167-2991(09)61307-0. http://dx.doi.org/10.1016/S0167-2991(09)61307-010.1016/S0167-2991(09)61307-0Suche in Google Scholar
[15] Ertl, G., Lee, S. B., & Weiss, M. (1982). Kinetics of nitrogen adsorption on Fe(111). Surface Science, 114, 515–526. DOI:10.1016/0039-6028(82)90702-6. http://dx.doi.org/10.1016/0039-6028(82)90702-610.1016/0039-6028(82)90702-6Suche in Google Scholar
[16] Figurski, M. J., Arabczyk, W., Lendzion-Bieluń, Z., Kaleńczuk, R. J., & Lenart, S. (2003). On the distribution of aluminium and magnesium oxides in wustite catalysts for ammonia synthesis. Applied Catalysis A: General, 247, 9–15. DOI:10.1016/S0926-860X(03)00084-X. http://dx.doi.org/10.1016/S0926-860X(03)00084-X10.1016/S0926-860X(03)00084-XSuche in Google Scholar
[17] Figurski, M. J., Arabczyk, W., Lendzion-Bieluń, Z., & Lenart, S. (2004). Investigation of manganese-doped iron ammonia synthesis catalysts. Applied Catalysis A: General, 266, 11–20. DOI: 10.1016/j.apcata.2004.01.032. http://dx.doi.org/10.1016/j.apcata.2004.01.03210.1016/j.apcata.2004.01.032Suche in Google Scholar
[18] Frankenburg, W. G. (1955). The catalytic synthesis of ammonia from nitrogen and hydrogen. In P. H. Emmett (Ed.), Catalysis (Vol. 3, pp. 171–263). New York, NY, USA: Reinhold Publishing Corporation. Suche in Google Scholar
[19] Grabke, H. J. (1969). Zur Fehlordnung des γ′-Eisennitrids. Berichte der Bunsen-Gesellschaft für Physikalische Chemie, 73, 596–601. DOI: 10.1002/bbpc.19690730617. Suche in Google Scholar
[20] Jennings, J. R. (Ed.) (1991). Catalytic ammonia synthesis fundamentals and practice. New York, NY, USA: Plenum Press. 10.1007/978-1-4757-9592-9Suche in Google Scholar
[21] Kiełbasa, K., Pelka, R., & Arabczyk, W. (2010). Studies of the kinetics of ammonia decomposition on promoted nanocrystalline iron using gas phases of different nitriding degree. Journal of Physical Chemistry A, 114, 4531–4534. DOI:10.1021/jp9099286. http://dx.doi.org/10.1021/jp909928610.1021/jp9099286Suche in Google Scholar
[22] Kunze, J. (1990). Nitrogen and carbon in iron and steels thermodynamics. In Physical research (Vol. 16). Berlin, Germany: Akademie Verlag. Suche in Google Scholar
[23] Lehrer, E. (1930). Über das Eisen-Wasserstoff-Ammoniak-Gleichgewicht. Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie, 36, 383–392. DOI: 10.1002/bbpc.19300360606. Suche in Google Scholar
[24] Lendzion-Bieluń, Z., & Arabczyk, W. (2001). Method for determination of the chemical composition of phases of the iron catalyst precursor for ammonia synthesis. Applied Catalysis A: General, 207, 37–41. DOI: 10.1016/S0926-860X(00)00614-1. http://dx.doi.org/10.1016/S0926-860X(00)00614-110.1016/S0926-860X(00)00614-1Suche in Google Scholar
[25] Lendzion-Bieluń, Z., Arabczyk, W., & Figurski, M. (2002). The effect of the iron oxidation degree on distribution of promoters in the fused catalyst precursors and their activity in the ammonia synthesis reaction. Applied Catalysis A: General, 227, 255–263. DOI: 10.1016/S0926-860X(01)00938-3. http://dx.doi.org/10.1016/S0926-860X(01)00938-310.1016/S0926-860X(01)00938-3Suche in Google Scholar
[26] Lightfoot, B. J., & Jack, D. H. (1975). Kinetics of nitriding with and without white-layer formation. In Heat treatment’ 73 (Book no. 163, pp. 59–65). London, UK: The Metals Society. Suche in Google Scholar
[27] Lu, K., & Lu, J. (1999). Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach. Journal of Materials Science and Technology, 15, 193–197. Suche in Google Scholar
[28] Moszyńska, I., Moszyński, D., & Arabczyk, W. (2009). Hysteresis in nitriding and reduction in the nanocrystalline iron-ammonia-hydrogen system. Przemysł Chemiczny, 88, 526–529. (in Polish) Suche in Google Scholar
[29] Nielsen, A. (1968). An investigation on promoted iron catalysts for the synthesis of ammonia. Copenhagen, Denmark: Julius Gjellerups Forlag. Suche in Google Scholar
[30] Nielsen, A. (Ed.) (1995). Ammonia: Catalysis and manufacture. Berlin, Germany: Springer-Verlag. 10.1007/978-3-642-79197-0Suche in Google Scholar
[31] Park, J. Y., & Levenspiel, O. (1975). The crackling core model for the reaction of solid particles. Chemical Engineering Science, 30, 1207–1214. DOI: 10.1016/0009-2509(75)85041-X. http://dx.doi.org/10.1016/0009-2509(75)85041-X10.1016/0009-2509(75)85041-XSuche in Google Scholar
[32] Pelka, R., & Arabczyk, W. (2009). Studies of the kinetics of reaction between iron catalysts and ammonia — Nitriding of nanocrystalline iron with parallel catalytic ammonia decomposition. Topics in Catalysis, 52, 1506–1516. DOI:10.1007/s11244-009-9297-y. http://dx.doi.org/10.1007/s11244-009-9297-y10.1007/s11244-009-9297-ySuche in Google Scholar
[33] Pelka, R., Glinka, P., & Arabczyk, W. (2008). The influence of iron nanocrystallite size on a nitriding process rate. Materials Science-Poland, 26, 349–356. Suche in Google Scholar
[34] Pelka, R., Moszyńska, I., & Arabczyk, W. (2009). Catalytic ammonia decomposition over Fe/Fe4N. Catalysis Letters, 128, 72–76. DOI: 10.1007/s10562-008-9758-0. http://dx.doi.org/10.1007/s10562-008-9758-010.1007/s10562-008-9758-0Suche in Google Scholar
[35] Schlögl, R. (1991). Preparation and activation of the technical ammonia synthesis catalyst. In J. R. Jennings (Ed.), Catalytic ammonia synthesis fundamentals and practice (pp. 19–107). New York, NY, USA: Plenum Press. Suche in Google Scholar
[36] Seth, B. B. L., & Ross, H. U. (1965). The mechanism of iron oxide reduction. Transactions of the Metallurgical Society of AIME, 233, 180–185. Suche in Google Scholar
[37] Tong, W. P., He, C. S., He, J. C., Zuo, L., Tao, N. R., & Wang, Z. B. (2006). Strongly enhanced nitriding kinetics by means of grain refinement. Applied Physics Letters, 89(2), 021918 (3 pages). DOI: 10.1063/1.2221498. http://dx.doi.org/10.1063/1.222149810.1063/1.2221498Suche in Google Scholar
[38] Tong, W. P., Tao, N. R., Wang, Z. B., Zhang, H. W., Lu, J., & Lu, K. (2004). The formation of ɛ-Fe3-2N phase in a nanocrystalline Fe. Scripta Materialia, 50, 647–650. DOI:10.1016/j.scriptamat.2003.11.022. http://dx.doi.org/10.1016/j.scriptamat.2003.11.02210.1016/j.scriptamat.2003.11.022Suche in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi
- Predicting retention indices of aliphatic hydrocarbons on stationary phases modified with metallocyclams using quantitative structure-retention relationships
- New SPME fibre for analysis of mequinol emitted from DVDs
- Continuous production of citric acid from raw glycerol by Yarrowia lipolytica in cell recycle cultivation
- Enhancing the production of gamma-linolenic acid in Hansenula polymorpha by fed-batch fermentation using response surface methodology
- Process characteristics for a gas—liquid system agitated in a vessel equipped with a turbine impeller and tubular baffles
- Kinetic study of pyrolysis of waste water treatment plant sludge
- Transport phenomena in an agitated vessel with an eccentrically located impeller
- Membrane extraction of 1-phenylethanol from fermentation solution
- Theoretical study on transesterification in a combined process consisting of a reactive distillation column and a pervaporation unit
- Wall effects on terminal falling velocity of spherical particles moving in a Carreau model fluid
- The effect of the physical properties of the liquid phase on the gas-liquid mass transfer coefficient in two- and three-phase agitated systems
- Effectiveness of nitric oxide ozonation
- Modelling of nanocrystalline iron nitriding process — influence of specific surface area
- Effect of CeO2 and Sb2O3 on the phase transformation and optical properties of photostable titanium dioxide
- Carnauba wax microparticles produced by melt dispersion technique
- Complexation studies of 3-substituted β-diketones with selected d- and f-metal ions
- Influence of the solvent donor number on the O/W partition ratio of Cu(II) complexes of 1,2-dialkylimidazoles
- Continuous dialysis of sulphuric acid in the presence of zinc sulphate
- Differences in affinity of arylstilbazolium derivatives to tetraplex structures
- Fast ferritin immunoassay on PDMS microchips
Artikel in diesem Heft
- Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi
- Predicting retention indices of aliphatic hydrocarbons on stationary phases modified with metallocyclams using quantitative structure-retention relationships
- New SPME fibre for analysis of mequinol emitted from DVDs
- Continuous production of citric acid from raw glycerol by Yarrowia lipolytica in cell recycle cultivation
- Enhancing the production of gamma-linolenic acid in Hansenula polymorpha by fed-batch fermentation using response surface methodology
- Process characteristics for a gas—liquid system agitated in a vessel equipped with a turbine impeller and tubular baffles
- Kinetic study of pyrolysis of waste water treatment plant sludge
- Transport phenomena in an agitated vessel with an eccentrically located impeller
- Membrane extraction of 1-phenylethanol from fermentation solution
- Theoretical study on transesterification in a combined process consisting of a reactive distillation column and a pervaporation unit
- Wall effects on terminal falling velocity of spherical particles moving in a Carreau model fluid
- The effect of the physical properties of the liquid phase on the gas-liquid mass transfer coefficient in two- and three-phase agitated systems
- Effectiveness of nitric oxide ozonation
- Modelling of nanocrystalline iron nitriding process — influence of specific surface area
- Effect of CeO2 and Sb2O3 on the phase transformation and optical properties of photostable titanium dioxide
- Carnauba wax microparticles produced by melt dispersion technique
- Complexation studies of 3-substituted β-diketones with selected d- and f-metal ions
- Influence of the solvent donor number on the O/W partition ratio of Cu(II) complexes of 1,2-dialkylimidazoles
- Continuous dialysis of sulphuric acid in the presence of zinc sulphate
- Differences in affinity of arylstilbazolium derivatives to tetraplex structures
- Fast ferritin immunoassay on PDMS microchips