Startseite Effect of CeO2 and Sb2O3 on the phase transformation and optical properties of photostable titanium dioxide
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of CeO2 and Sb2O3 on the phase transformation and optical properties of photostable titanium dioxide

  • Marta Gleń EMAIL logo , Barbara Grzmil , Joanna Sreńscek-Nazzal und Bogumił Kic
Veröffentlicht/Copyright: 26. Januar 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the present work, the effect of individual additives calculated as molar fractions of Sb2O3 and CeO2 (x Sb 2O3 range: 0.03–0.08 %, x CeO 2 range: 0.05–0.14 %), on the phase composition, phase transformation, and optical properties of photostable rutile titanium dioxide was studied using selective leaching method, ICP-AES technique, XRD method, spectrophotometric analysis and S BET measurements. The starting material was hydrated titanium dioxide. It was observed that the addition of Sb2O3 to TiO2 did not influence the anatase-rutile phase transformation, but increasing the CeO2 addition caused a decrease in the rutilization degree. Thus, CeO2 acted as an inhibitor of the TiO2 phase transformation. Sb2O3 addition to TiO2 presumably caused the formation of a co-phase of Sb with Ti. Cerium formed a separate phase, CeO2, and reacted partly with titanium, probably creating co-phase, Ce0.8Ti0.2O2. Comparing the colour of modified rutile titanium dioxide according to the type of the additive introduced, it was found that TiO2 with CeO2 had higher brightness but lower white tone values when compared with TiO2 modified with Sb2O3. The relative lightening power and grey tone of the modified TiO2 were higher in TiO2 modified with Sb2O3. The values of the photocatalytic activity measured in all TiO2 samples modified either with Sb2O3 or CeO2 were very similar and varied around the value of 21.

[1] Adams, R. (2007). TiO2 report — more choice for buyers — Reg Adams provides an overview of the total world TiO2 pigment consumption. Polymers Paint Color Journal, 197, 35–36. Suche in Google Scholar

[2] Borgarello, E., Kiwi, J., Pelizzetti, E., Visca, M., & Graetzel, M. (1981). Sustained water cleavage by visible light. Journal of the American Chemical Society, 103, 6324–6329. DOI: 10.1021/ja00411a010. http://dx.doi.org/10.1021/ja00411a01010.1021/ja00411a010Suche in Google Scholar

[3] Cai, T., Liao, Y., Peng, Z., Long, Y., Wei, Z., & Deng, Q. (2009). Photocatalytic performance of TiO2 catalysts modified by H3PW12O40, ZrO2 and CeO2. Journal of Environmental Sciences, 21, 997–1004. DOI: 10.1016/S1001-0742(08)62374-8. http://dx.doi.org/10.1016/S1001-0742(08)62374-810.1016/S1001-0742(08)62374-8Suche in Google Scholar

[4] Choi, W., Termin, A., & Hoffmann, M. R. (1994). The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. Journal of Physical Chemistry, 98, 13669–13679. DOI: 10.1021/j100102a038. http://dx.doi.org/10.1021/j100102a03810.1021/j100102a038Suche in Google Scholar

[5] Colón, G., Sánchez-España, J. M., Hidalgo, M. C., & Navío, J. A. (2006). Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation. Journal of Photochemistry and Photobiology A: Chemistry, 179, 20–27. DOI: 10.1016/j.jphotochem.2005.07.007. http://dx.doi.org/10.1016/j.jphotochem.2005.07.00710.1016/j.jphotochem.2005.07.007Suche in Google Scholar

[6] Cunningham, J., & Srijaranai, S. (1988). Isotope-effect evidence for hydroxyl radical involvement in alcohol photo-oxidation sensitized by TiO2 in aqueous suspension. Journal of Photochemistry and Photobiology A: Chemistry, 43, 329–335. DOI: 10.1016/1010-6030(88)80029-7. http://dx.doi.org/10.1016/1010-6030(88)80029-710.1016/1010-6030(88)80029-7Suche in Google Scholar

[7] Dąbrowski, W., Tymejczyk, A., & Lubkowska, A. (2006). Właściwości i zastosowanie pigmentów dwutlenku tytanu (Properties and application of titanium dioxide pigments). Police, Poland: Chemical Plant “Police” S.A. Suche in Google Scholar

[8] Diebold, M. P. (1995a). The causes and prevention of titanium-dioxide induced photodegradation of paints. Part I: Theoretical considerations and durability. Surface Coatings International, 6, 250–256. Suche in Google Scholar

[9] Diebold, M. P. (1995b). The causes and prevention of titanium-dioxide induced photodegradation of paints. Part II: Durability enhancement. Surface Coatings International, 7, 294–299. Suche in Google Scholar

[10] Ding, X.-Z., & Liu, X.-H. (1998). Correlation between anatase-to-rutile transformation and grain growth in nanocrystalline titania powders. Journal of Materials Research, 13, 2556–2559. DOI: 10.1557/JMR.1998.0356. http://dx.doi.org/10.1557/JMR.1998.035610.1557/JMR.1998.0356Suche in Google Scholar

[11] Escribano, V. S., Busca, G., & Lorenzelli, V. (1991). FT-IR studies of the reactivity of vanadia-titania catalysts toward olefins. 3. Butenes and isobutene. The Journal of Physical Chemistry, 95, 5541–5545. DOI: 10.1021/j100167a033. http://dx.doi.org/10.1021/j100167a03310.1021/j100167a033Suche in Google Scholar

[12] Fang, J., Bi, X., Si, D., Jiang, Z., & Huang, W. (2001). Spectroscopic studies of interfacial structures of CeO2-TiO2 mixed oxides. Applied Surface Science, 253, 8952–8961. DOI: 10.1016/j.apsusc.2007.05.013. http://dx.doi.org/10.1016/j.apsusc.2007.05.01310.1016/j.apsusc.2007.05.013Suche in Google Scholar

[13] Fox, M. A. (1983). Organic heterogeneous photocatalysis: chemical conversions sensitized by irradiated semiconductors. Accounts of Chemical Research, 16, 314–321. DOI: 10.1021/ar00093a001. http://dx.doi.org/10.1021/ar00093a00110.1021/ar00093a001Suche in Google Scholar

[14] Francisco, M. S. P., Mastelaro, V. R., Nascente, P. A. P., & Florentino, A. O. (2001). Activity and characterization by XPS, HR-TEM, Raman spectroscopy, and BET surface area of CuO/CeO2-TiO2 catalysts. The Journal of Physical Chemistry B, 105, 10515–10522. DOI: 10.1021/jp0109675. http://dx.doi.org/10.1021/jp010967510.1021/jp0109675Suche in Google Scholar

[15] Gouma, P. I., & Mills, M. J. (2001). Anatase-to rutile transformation in titania powders. Journal of the American Ceramic Society, 84, 619–622. DOI: 10.1111/j.1151-2916.2001.tb00709.x. http://dx.doi.org/10.1111/j.1151-2916.2001.tb00709.x10.1111/j.1151-2916.2001.tb00709.xSuche in Google Scholar

[16] Gribb, A. A., & Banfield, J. F. (1997). Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. American Mineralogist, 82, 717–728. 10.2138/am-1997-7-809Suche in Google Scholar

[17] Grzmil, B., Kic, B., & Rabe, M. (2004). Inhibition of the anatase—rutile phase transformation with addition of K2O, P2O5, and Li2O. Chemical Papers, 58, 410–414. Suche in Google Scholar

[18] Hu, Y., Zhang, H., & Yang, H. (2007). Direct synthesis of Sb2O3 nanoparticles via hydrolysis-precipitation method. Journal of Alloys and Compounds, 428, 327–331. DOI: 10.1016/j.jallcom.2006.03.057. http://dx.doi.org/10.1016/j.jallcom.2006.03.05710.1016/j.jallcom.2006.03.057Suche in Google Scholar

[19] Jacobson, H. W. (1995). Lightfast titanium oxide pigment. WO Patent No. 95/12638. World Intellectual Property Organization, International Bureau. Suche in Google Scholar

[20] Jha, A. K., Prasad, K., & Prasad, K. (2009). A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochemical Engineering Journal, 43, 303–306. DOI: 10.1016/j.bej.2008.10.016. http://dx.doi.org/10.1016/j.bej.2008.10.01610.1016/j.bej.2008.10.016Suche in Google Scholar

[21] Jiang, B., Zhang, S., Guo, X., Jin, B., & Tian, Y. (2009). Preparation and photocatalytic activity of CeO2/TiO2 interface composite film. Applied Surface Science, 255, 5975–5978. DOI: 10.1016/j.apsusc.2009.01.049. http://dx.doi.org/10.1016/j.apsusc.2009.01.04910.1016/j.apsusc.2009.01.049Suche in Google Scholar

[22] Kalevaru, V. N., Benhmid, A., Radnik, J., Lücke, B., & Martin, A. (2006). Effect of Sb loading on Pd nanoparticles and its influence on the catalytic performance of Sb-Pd/TiO2 solids for acetoxylation of toluene. Journal of Catalysis, 243, 25–35. DOI: 10.1016/j.jcat.2006.06.023. http://dx.doi.org/10.1016/j.jcat.2006.06.02310.1016/j.jcat.2006.06.023Suche in Google Scholar

[23] Karvinen, S. M. (2003). The effects of trace element doping on the optical properties and photocatalytic activity of nanostructured titanium dioxide. Industrial & Engineering Chemistry Research, 42, 1035–1043. DOI: 10.1021/ie020358z. http://dx.doi.org/10.1021/ie020358z10.1021/ie020358zSuche in Google Scholar

[24] Kiwi, J., & Morrison, C. (1984). Heterogeneous photocatalysis. Dynamics of charge transfer in lithium-doped anatase-based catalyst powders with enhanced water photocleavage under ultraviolet irradiation. The Journal of Physical Chemistry, 88, 6146–6152. DOI: 10.1021/j150669a018. http://dx.doi.org/10.1021/j150669a01810.1021/j150669a018Suche in Google Scholar

[25] Körösi, L., & Dékány, I. (2006). Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 280, 146–154. DOI: 10.1016/j.colsurfa.2006.01.052. http://dx.doi.org/10.1016/j.colsurfa.2006.01.05210.1016/j.colsurfa.2006.01.052Suche in Google Scholar

[26] Kumar, K.-N. P. (1995). Growth of rutile crystallites during the initial stage of anatase-to-rutile transformation in pure titania and in titania-alumina nanocomposites. Scripta Metallurgica et Materialia, 32, 873–877. DOI: 10.1016/0956-716X(95)93217-R. http://dx.doi.org/10.1016/0956-716X(95)93217-R10.1016/0956-716X(95)93217-RSuche in Google Scholar

[27] Lee, W., Do, Y. R., Dwight, K., & Wold, A. (1993). Enhancement of photocatalytic activity of titanium (IV) oxide with molybdenum (VI) oxide. Materials Research Bulletin, 28, 1127–1134. DOI: 10.1016/0025-5408(93)90092-R. http://dx.doi.org/10.1016/0025-5408(93)90092-R10.1016/0025-5408(93)90092-RSuche in Google Scholar

[28] Lendzion-Bieluń, Z., & Arabczyk, W. (2001). Method for determination of the chemical composition of phases of the iron catalyst precursor for ammonia synthesis. Applied Catalysis A: General, 207, 37–41. DOI: 10.1016/S0926-860X(00)00614-1. http://dx.doi.org/10.1016/S0926-860X(00)00614-110.1016/S0926-860X(00)00614-1Suche in Google Scholar

[29] Lewis, P. A. (1988). Pigment handbook. Properties and economics. Toronto, Canada: Wiley. Suche in Google Scholar

[30] Lin, J., & Yu, J. C. (1998). An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air. Journal of Photochemistry and Photobiology A: Chemistry, 116, 63–67. DOI: 10.1016/S1010-6030(98)00289-5. http://dx.doi.org/10.1016/S1010-6030(98)00289-510.1016/S1010-6030(98)00289-5Suche in Google Scholar

[31] Luo, M., Chen, J., Chen, L., & Lu, J. (2001). Structure and redox properties of CexTi1−xO2 solid solution. Chemistry of Materials, 13, 197–202. DOI: 10.1021/cm000470s. http://dx.doi.org/10.1021/cm000470s10.1021/cm000470sSuche in Google Scholar

[32] Moser, J., Grätzel, M., & Gallay, R. (1987). Inhibition of electron-hole recombination in substitutionally doped colloidal semiconductor crystallites. Helvetica Chimica Acta, 70, 1596–1604. DOI: 10.1002/hlca.19870700617. http://dx.doi.org/10.1002/hlca.1987070061710.1002/hlca.19870700617Suche in Google Scholar

[33] O’Neil, M. J. (2010). The Merck index: An encyclopedia of chemicals, drugs, and biologicals. New York, NY, USA: Merck Sharp & Dohme Corp. Suche in Google Scholar

[34] Palmisano, L., Augugliaro, V., Sclafani, A., & Schiavello, M. (1988). Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation. The Journal of Physical Chemistry, 92, 6710–6713. DOI: 10.1021/j100334a044. http://dx.doi.org/10.1021/j100334a04410.1021/j100334a044Suche in Google Scholar

[35] Patrick, R. F. (2006). Some factors affecting the opacity, color, and color stability of titania-opacified enamels. Journal of the American Ceramic Society, 34, 96–102. DOI: 10.1111/j.1151-2916.1951.tb13493.x. http://dx.doi.org/10.1111/j.1151-2916.1951.tb13493.x10.1111/j.1151-2916.1951.tb13493.xSuche in Google Scholar

[36] Pavasupree, S., Suzuki, Y., Pivsa-Art, S., & Yoshikawa, S. (2005). Preparation and characterization of mesoporous TiO2-CeO2 nanopowders respond to visible wavelength. Journal of Solid State Chemistry, 178, 128–134. DOI: 10.1016/j.jssc.2004.10.028. http://dx.doi.org/10.1016/j.jssc.2004.10.02810.1016/j.jssc.2004.10.028Suche in Google Scholar

[37] Pillep, B., Behrens, P., Schubert, U.-A., Spengler, J., & Knözinger, H. (1999). Mechanical and thermal spreading of antimony oxides on the TiO2 surface: Dispersion and properties of surface antimony oxide species. The Journal of Physical Chemistry B, 103, 9595–9603. DOI: 10.1021/jp991441b. http://dx.doi.org/10.1021/jp991441b10.1021/jp991441bSuche in Google Scholar

[38] Reddy, R. R., Ahammed, Y. N., Gopal, K. R., & Raghuram, D. V. (1998). Optical electronegativity and refractive index of materials. Optical Materials, 10, 95–100. DOI: 10.1016/S0925-3467(97)00171-7. http://dx.doi.org/10.1016/S0925-3467(97)00171-710.1016/S0925-3467(97)00171-7Suche in Google Scholar

[39] Satyanarayana, T., Kityk, I. V., Ozga, K., Piasecki, M., Bragiel, P., Brik, M. G., Kumar, V. R., Reshak, A. H., & Veeraiah, N. (2009). Role of titanium valence states in optical and electronic features of PbO-Sb2O3-B2O3:TiO2 glass alloys. Journal of Alloys and Compounds, 482, 283–297. DOI: 10.1016/j.jallcom.2009.03.185. http://dx.doi.org/10.1016/j.jallcom.2009.03.18510.1016/j.jallcom.2009.03.185Suche in Google Scholar

[40] Sheinkman, A. I., Gol’dshtein, L. M., Turlakov, V. N., & Kleshchev, G. V. (1972). Phase formations during the interaction of antimony oxides with hydrated titanium dioxide. Zhurnal Prikladnoi Khimii, 45, 940–944. Suche in Google Scholar

[41] Suresh, C., Biju, V., Mukundan, P., & Warrier, K. G. K. (1998). Anatase to rutile transformation in sol-gel titania by modification of precursor. Polyhedron, 17, 3131–3135. DOI: 10.1016/S0277-5387(98)00077-1. http://dx.doi.org/10.1016/S0277-5387(98)00077-110.1016/S0277-5387(98)00077-1Suche in Google Scholar

[42] Teixeira, S., & Bernardin, A. M. (2009). Development of TiO2 white glazes for ceramic tiles. Dyes and Pigments, 80, 292–296. DOI: 10.1016/j.dyepig.2008.07.017. http://dx.doi.org/10.1016/j.dyepig.2008.07.01710.1016/j.dyepig.2008.07.017Suche in Google Scholar

[43] Thampi, K. R., Kiwi, J., & Grätzel, M. (1988). Room temperature photo-activation of methane on TiO2 supported molybdena. Catalysis Letters, 1, 109–116. DOI: 10.1007/BF00765891. http://dx.doi.org/10.1007/BF0076589110.1007/BF00765891Suche in Google Scholar

[44] Toro, R. G., Malandrino, G., Fragalà, I. L., Lo Nigro, R., Losurdo, M., & Bruno, G. (2004). Relationship between the nanostructures and the optical properties of CeO2 thin films. The Journal of Physical Chemistry B, 108, 16357–16364. DOI: 10.1021/jp048083j. http://dx.doi.org/10.1021/jp048083j10.1021/jp048083jSuche in Google Scholar

[45] Trovarelli, A. (1996). Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews: Science and Engineering, 38, 439–520. DOI: 10.1080/01614949608006464. http://dx.doi.org/10.1080/0161494960800646410.1080/01614949608006464Suche in Google Scholar

[46] Tyler, F. K. (2000). Tailoring TiO2 treatment chemistry to achieve desired performance properties. Paint & Coating Industry, 16, 32. Suche in Google Scholar

[47] Winkler, J. (2003). Titanium dioxide. Hannover, Germany: Vincentz Network. Suche in Google Scholar

[48] Wold, A. (1993). Photocatalytic properties of titanium dioxide (TiO2). Chemistry of Materials, 5, 280–283. DOI: 10.1021/cm00027a008. http://dx.doi.org/10.1021/cm00027a00810.1021/cm00027a008Suche in Google Scholar

[49] Ye, C., Wang, G., Kong, M., & Zhang, L. (2006). Controlled synthesis of Sb2O3 nanoparticles, nanowires and nanoribbon. Journal of Nanomaterials, 2006,95670, 1–5. DOI: 10.1155/JNM/2006/95670. http://dx.doi.org/10.1155/JNM/2006/9567010.1155/JNM/2006/95670Suche in Google Scholar

[50] Yu, J. C., Lin, J., & Kwok, R. W. M. (1998). Ti1−x ZrxO2 solid solutions for the photocatalytic degradation of acetone in air. The Journal of Physical Chemistry B, 102, 5094–5098. DOI: 10.1021/jp980332e. http://dx.doi.org/10.1021/jp980332e10.1021/jp980332eSuche in Google Scholar

[51] Zeng, D. W., Zhu, B. L., Xie, C. S., Song, W. L., & Wang, A. H. (2004). Oxygen partial pressure effect on synthesis and characteristics of Sb2O3 nanoparticles. Materials Science and Engineering A, 366, 332–337. DOI: 10.1016/j.msea.2003.08.044. http://dx.doi.org/10.1016/j.msea.2003.08.04410.1016/j.msea.2003.08.044Suche in Google Scholar

[52] Zhang, H. J., & Wen, D. Z. (2007). Antibacterial properties of Sb-TiO2 thin films by RF magnetron co-sputtering. Surface and Coatings Technology, 201, 5720–5723. DOI: 10.1016/j.surfcoat.2006.07.109. http://dx.doi.org/10.1016/j.surfcoat.2006.07.10910.1016/j.surfcoat.2006.07.109Suche in Google Scholar

[53] Zhao, W., Ma, W., Chen, C., Zhao, J., & Shuai, Z. (2004). Efficient degradation of toxic organic pollutants with Ni2O3/TiO2−x Bx under visible irradiation. Journal of the American Ceramic Society, 126, 4782–4783. DOI: 10.1021/ja0396753. 10.1021/ja0396753Suche in Google Scholar PubMed

Published Online: 2011-1-26
Published in Print: 2011-4-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi
  2. Predicting retention indices of aliphatic hydrocarbons on stationary phases modified with metallocyclams using quantitative structure-retention relationships
  3. New SPME fibre for analysis of mequinol emitted from DVDs
  4. Continuous production of citric acid from raw glycerol by Yarrowia lipolytica in cell recycle cultivation
  5. Enhancing the production of gamma-linolenic acid in Hansenula polymorpha by fed-batch fermentation using response surface methodology
  6. Process characteristics for a gas—liquid system agitated in a vessel equipped with a turbine impeller and tubular baffles
  7. Kinetic study of pyrolysis of waste water treatment plant sludge
  8. Transport phenomena in an agitated vessel with an eccentrically located impeller
  9. Membrane extraction of 1-phenylethanol from fermentation solution
  10. Theoretical study on transesterification in a combined process consisting of a reactive distillation column and a pervaporation unit
  11. Wall effects on terminal falling velocity of spherical particles moving in a Carreau model fluid
  12. The effect of the physical properties of the liquid phase on the gas-liquid mass transfer coefficient in two- and three-phase agitated systems
  13. Effectiveness of nitric oxide ozonation
  14. Modelling of nanocrystalline iron nitriding process — influence of specific surface area
  15. Effect of CeO2 and Sb2O3 on the phase transformation and optical properties of photostable titanium dioxide
  16. Carnauba wax microparticles produced by melt dispersion technique
  17. Complexation studies of 3-substituted β-diketones with selected d- and f-metal ions
  18. Influence of the solvent donor number on the O/W partition ratio of Cu(II) complexes of 1,2-dialkylimidazoles
  19. Continuous dialysis of sulphuric acid in the presence of zinc sulphate
  20. Differences in affinity of arylstilbazolium derivatives to tetraplex structures
  21. Fast ferritin immunoassay on PDMS microchips
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0103-x/html?lang=de
Button zum nach oben scrollen