Startseite Enhancing the production of gamma-linolenic acid in Hansenula polymorpha by fed-batch fermentation using response surface methodology
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Enhancing the production of gamma-linolenic acid in Hansenula polymorpha by fed-batch fermentation using response surface methodology

  • Bhimabol Khongto EMAIL logo , Kobkul Laoteng und Anan Tongta
Veröffentlicht/Copyright: 26. Januar 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Gamma-linolenic acid (GLA, C18:3Δ6,9,12) is an n-6 polyunsaturated fatty acid (PUFA) that has been used for the alleviation and treatment of a number of symptoms and diseases. Increasing GLA demand has led to a search for alternative producers and potential strategies for GLA production. Based on the successful performance of Hansenula polymorpha, a methylotrophic yeast, as a “cell factory” for the production of valuable bioproducts, a bioprocess development approach was implemented for GLA production in the recombinant yeast carrying the mutated Δ6-desaturase gene of Mucor rouxii. Using a substrate-feeding strategy under glycerol-limited conditions, the physical-chemical variables during the fed-batch fermentation of the recombinant H. polymorpha were optimised for GLA production through response surface methodology using a Box-Behnken design. The medium composition, including yeast extract and trace elements, and dissolved oxygen tension (DOT) were targeted. We found that DOT was the most effective variable for enhancing GLA yield. These results also suggest that the optimum conditions for GLA production are 28 % saturation of DOT, 1 g L−1 of yeast extract and 3.6 mL L−1 of the Pichia trace metals 1 (PTM1).

[1] Ahmed, S. U., Singh, K. S., Pandey, A., Kanjilal, S., & Prasad, R. B. N. (2009). Application of response surface method for studying the role of dissolved oxygen and agitation speed on gamma-linolenic acid production. Applied Biochemistry and Biotechnology, 152, 108–116. DOI: 10.1007/s12010-008-8256-6. http://dx.doi.org/10.1007/s12010-008-8256-610.1007/s12010-008-8256-6Suche in Google Scholar

[2] Ahmed, S. U., Singh, S. K., Pandey, A., Kanjilal, S., & Prasad, R. B. N. (2008). Fatty acid profiling during microbial lipid production under varying pO2 and impeller tip speeds. Applied Biochemistry and Biotechnology, 151, 599–609. DOI: 10.1007/s12010-008-8261-9. http://dx.doi.org/10.1007/s12010-008-8261-910.1007/s12010-008-8261-9Suche in Google Scholar

[3] Certik, M., Megova, J., & Horenitzky, R. (1999). Effect of nitrogen sources on the activities of lipogenic enzymes in oleaginous fungus Cunninghamella echinulata. The Journal of General and Applied Microbiology, 45, 289–293. DOI: 10.2323/jgam.45.289. http://dx.doi.org/10.2323/jgam.45.28910.2323/jgam.45.289Suche in Google Scholar

[4] Certik, M., & Shimizu, S. (1999). Biosynthesis and regulation of microbial polyunsaturated fatty acid production. Journal of Bioscience and Bioengineering, 87, 1–14. DOI: 10.1016/S1389-1723(99)80001-2. http://dx.doi.org/10.1016/S1389-1723(99)80001-210.1016/S1389-1723(99)80001-2Suche in Google Scholar

[5] Chen, H.-C., & Chang, C.-C. (1996). Production of γ-linolenic acid by the fungus Cunninghamella echinulata CCRC 31840. Biotechnology Progress, 12, 338–341. DOI: 10.1021/bp9600 09y. http://dx.doi.org/10.1021/bp960009ySuche in Google Scholar

[6] Chen, P. T., Chiang, C.-J., & Chao, Y.-P. (2010). Medium optimization and production of secreted Renilla luciferase in Bacillus subtilis by fed-batch fermentation. Biochemical Engineering Journal, 49, 395–400. DOI: 10.1016/j.bej.2010.02.001. http://dx.doi.org/10.1016/j.bej.2010.02.00110.1016/j.bej.2010.02.001Suche in Google Scholar

[7] Chen, Z., Wang, Z., He, X., Guo, X., Li, W., & Zhang, B. (2008). Uricase production by a recombinant Hansenula polymorpha strain harboring Candida utilis uricase gene. Applied Microbiology and Biotechnology, 79, 545–554. DOI: 10.1007/s00253-008-1472-8. http://dx.doi.org/10.1007/s00253-008-1472-810.1007/s00253-008-1472-8Suche in Google Scholar PubMed

[8] d’Anjou, M. C., & Daugulis, A. J. (1997). A model-based feeding strategy for fed batch fermentation of recombinant Pichia pastoris. Biotechnology Techniques, 11, 865–868. DOI: 10.1023/A:1018449930343. http://dx.doi.org/10.1023/A:101844993034310.1023/A:1018449930343Suche in Google Scholar

[9] du Preez, J. C., Immelman, M., Kock, J. L. F., & Kilian, S. G. (1997). The effect of acetic acid concentration on the growth and production of gamma-linolenic acid by Mucor circinelloides CBS 203.28 in fed-batch culture. World Journal of Microbiology and Biotechnology, 13, 81–87. DOI: 10.1007/BF02770812. http://dx.doi.org/10.1007/BF0277081210.1007/BF02770812Suche in Google Scholar

[10] Dyal, S. D., Bouzidi, L., & Narine, S. S. (2005). Maximizing the production of γ-linolenic acid in Mortierella ramanniana var. ramammiana as a function of pH, temperature and carbon source, nitrogen source, metal ions and oil supplementation. Food Research International, 38, 815–829. DOI: 10.1016/j.foodres.2005.04.002. http://dx.doi.org/10.1016/j.foodres.2005.04.00210.1016/j.foodres.2005.04.002Suche in Google Scholar

[11] Fakas, S., Čertik, M., Papanikolaou, S., Aggelis, G., Komaitis, M., & Galiotou-Panagotou, M. (2008). γ-Linolenic acid production by Cunninghamella echinulata growing on complex organic nitrogen sources. Bioresource Technology, 99, 5986–5990. DOI: 10.1016/j.biortech.2007.10.016. http://dx.doi.org/10.1016/j.biortech.2007.10.01610.1016/j.biortech.2007.10.016Suche in Google Scholar PubMed

[12] Gellissen, G., Kunze, G., Gaillardin, C., Cregg, J. M., Berardi, E., Veenhuis, M., & van der Klei, I. (2005). New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphicArxula adeninivorans and Yarrowia lipolytica — A comparison. FEMS Yeast Research, 5, 1079–1096. DOI: 10.1016/j.femsyr.2005.06.004. http://dx.doi.org/10.1016/j.femsyr.2005.06.00410.1016/j.femsyr.2005.06.004Suche in Google Scholar

[13] Gill, I., & Valivety, R. (1997). Polyunsaturated fatty acids, part 1: Occurrence, biological activities and applications. Trends in Biotechnology, 15, 401–409. DOI: 10.1016/S0167-7799(97)01076-7. http://dx.doi.org/10.1016/S0167-7799(97)01076-710.1016/S0167-7799(97)01076-7Suche in Google Scholar

[14] Guilmanov, V., Ballistreri, A., Impallomeni, G., & Gross, R. A. (2002). Oxygen transfer rate and sophorose lipid production by Candida bombicola. Biotechnology and Bioengineering, 77, 489–494. DOI:10.1002/bit.10177. http://dx.doi.org/10.1002/bit.1017710.1002/bit.10177Suche in Google Scholar

[15] Hansson, L., & Dostálek, M. (1988). Effect of culture conditions on mycelial growth and production of γ-linolenic acid by the fungus Mortierella ramanniana. Applied Microbiology and Biotechnology, 28, 240–246. DOI: 10.1007/BF00250448. http://dx.doi.org/10.1007/BF0025044810.1007/BF00250448Suche in Google Scholar

[16] Higashiyama, K., Murakami, K., Tsujimura, H., Matsumoto, N., & Fujikawa, S (1999). Effects of dissolved oxygen on the morphology of an arachidonic acid production by Mortierella alpina 1S-4. Biotechnology and Bioengineering, 63, 442–448. DOI: 10.1002/(SICI)1097-0290(19990520)63:4〈442::AIDBIT7〉 3.0.CO;2-9. http://dx.doi.org/10.1002/(SICI)1097-0290(19990520)63:4<442::AID-BIT7>3.0.CO;2-910.1002/(SICI)1097-0290(19990520)63:4<442::AID-BIT7>3.0.CO;2-9Suche in Google Scholar

[17] Hiruta, O., Futamura, T., Takebe, H., Satoh, A., Kamisaka, Y., Yokochi, T., Nakahara, T., & Suzuki, O. (1996). Optimization and scale-up of γ-linolenic acid production by Mortierella ramanniana MM 15-1, a high γ-linolenic acid producing mutant. Journal of Fermentation and Bioengineering, 82, 366–370. DOI: 10.1016/0922-338X(96)89152-5. http://dx.doi.org/10.1016/0922-338X(96)89152-510.1016/0922-338X(96)89152-5Suche in Google Scholar

[18] Jahic, M., Veide, A., Charoenrat, T., Teeri, T., & Enfors, S.-O. (2006). Process technology for production and recovery of heterologous proteins with Pichia pastoris. Biotechnology Progress, 22, 1465–1473. DOI: 10.1021/bp060171t. 10.1021/bp060171tSuche in Google Scholar

[19] Jang, H.-D., Lin, Y.-Y., & Yang, S.-S. (2005). Effect of culture media and conditions on polyunsaturated fatty acids production by Mortierella alpina. Bioresource Technology, 96, 1633–1644. DOI: 10.1016/j.biortech.2004.12.027. http://dx.doi.org/10.1016/j.biortech.2004.12.02710.1016/j.biortech.2004.12.027Suche in Google Scholar

[20] Laoteng, K., Ruenwai, R., Tanticharoen, M., & Cheevadhanarak, S. (2005). Genetic modification of essential fatty acids biosynthesis in Hansenula polymorpha. FEMS Microbiology Letters, 245, 169–178. DOI: 10.1016/j.femsle.2005.03.006. http://dx.doi.org/10.1016/j.femsle.2005.03.00610.1016/j.femsle.2005.03.006Suche in Google Scholar

[21] Lepage, G., & Roy, C. C. (1984). Improved recovery of fatty acid through direct transesterification without prior extraction or purification. Journal of Lipid Research, 25, 1391–1396. 10.1016/S0022-2275(20)34457-6Suche in Google Scholar

[22] Mamatha, S. S., Ravi, R., & Venkateswaran, G. (2008). Medium optimization of gamma linolenic acid production in Mucor rouxii CFR-G15 using RSM. Food and Bioprocess Technology, 1, 405–409. DOI: 10.1007/s11947-008-0103-9. http://dx.doi.org/10.1007/s11947-008-0103-910.1007/s11947-008-0103-9Suche in Google Scholar

[23] Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology: Process and product optimization using designed experiments. New York, NY, USA: Wiley. Suche in Google Scholar

[24] Na-Ranong, S., Laoteng, K., Kittakoop, P., Tanticharoen, M., & Cheevadhanarak, S. (2006). Targeted mutagenesis of a fatty acid Δ6-desaturase from Mucor rouxii: Role of amino acid residues adjacent to histidine-rich motif II. Biochemical and Biophysical Research Communications, 339, 1029–1034. DOI: 10.1016/j.bbrc.2005.11.115. http://dx.doi.org/10.1016/j.bbrc.2005.11.11510.1016/j.bbrc.2005.11.115Suche in Google Scholar

[25] Nasrabadi, N. M. R., & Razavi, S. H. (2010). Use of response surface methodology in a fed-batch process for optimization of tricarboxylic acid cycle intermediates to achieve high levels of canthaxanthin from Dietzia natronolimnaea HS-1. Journal of Bioscience and Bioengineering, 109, 361–368. DOI: 10.1016/j.jbiosc.2009.10.013. http://dx.doi.org/10.1016/j.jbiosc.2009.10.01310.1016/j.jbiosc.2009.10.013Suche in Google Scholar

[26] Papanikolaou, S., Komaitis, M., & Aggelis, G. (2004). Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresource Technology, 95, 287–291. DOI: 10.1016/j.biortech.2004.02.016. http://dx.doi.org/10.1016/j.biortech.2004.02.01610.1016/j.biortech.2004.02.016Suche in Google Scholar

[27] Plantz, B. A., Nickerson, K., Kachman, S. D., & Schlegel, V. L. (2007). Evaluation of metals in a defined medium for Pichia pastoris expressing recombinant β-galactosidase. Biotechnology Progress, 23, 687–692. DOI: 10.1021/bp060332t. http://dx.doi.org/10.1021/bp060332t10.1021/bp060332tSuche in Google Scholar

[28] Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 86, 807–815. DOI: 10.1016/j.biochi.2004.09.017. http://dx.doi.org/10.1016/j.biochi.2004.09.01710.1016/j.biochi.2004.09.017Suche in Google Scholar

[29] Ratledge, C., & Wynn, J. P. (2002). The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology, 51, 1–44. DOI: 10.1016/S0065-2164(02)51000-5. http://dx.doi.org/10.1016/S0065-2164(02)51000-510.1016/S0065-2164(02)51000-5Suche in Google Scholar

[30] Shen, Y., Yuan, W., Pei, Z., & Mao, E. (2010). Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Applied Biochemistry and Biotechnology, 160, 1674–1684. DOI: 10.1007/s12010-009-8659-z. http://dx.doi.org/10.1007/s12010-009-8659-z10.1007/s12010-009-8659-zSuche in Google Scholar PubMed

[31] StatSoft Inc. (2007). Statistica, Version 8. Tulsa, OK, USA: StatSoft Inc. Suche in Google Scholar

[32] Wu, S.-T., Yu, S.-T., & Lin, L.-P. (2005). Effect of culture conditions on docosahexaenoic acid production by Schizochytrium sp. S31. Process Biochemistry, 40, 3103–3108. DOI: 10.1016/j.procbio.2005.03.007. http://dx.doi.org/10.1016/j.procbio.2005.03.00710.1016/j.procbio.2005.03.007Suche in Google Scholar

[33] Zhao, X., Kong, X., Hua, Y., Feng, B., & Zhao, Z. K. (2008). Medium optimization for lipid production through co-fermentation of glucose and xylose by oleaginous yeast Lipomyces starkeyi. European Journal of Lipid Science and Technology, 110, 405–412. DOI: 10.1002/ejlt.200700224. http://dx.doi.org/10.1002/ejlt.20070022410.1002/ejlt.200700224Suche in Google Scholar

Published Online: 2011-1-26
Published in Print: 2011-4-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi
  2. Predicting retention indices of aliphatic hydrocarbons on stationary phases modified with metallocyclams using quantitative structure-retention relationships
  3. New SPME fibre for analysis of mequinol emitted from DVDs
  4. Continuous production of citric acid from raw glycerol by Yarrowia lipolytica in cell recycle cultivation
  5. Enhancing the production of gamma-linolenic acid in Hansenula polymorpha by fed-batch fermentation using response surface methodology
  6. Process characteristics for a gas—liquid system agitated in a vessel equipped with a turbine impeller and tubular baffles
  7. Kinetic study of pyrolysis of waste water treatment plant sludge
  8. Transport phenomena in an agitated vessel with an eccentrically located impeller
  9. Membrane extraction of 1-phenylethanol from fermentation solution
  10. Theoretical study on transesterification in a combined process consisting of a reactive distillation column and a pervaporation unit
  11. Wall effects on terminal falling velocity of spherical particles moving in a Carreau model fluid
  12. The effect of the physical properties of the liquid phase on the gas-liquid mass transfer coefficient in two- and three-phase agitated systems
  13. Effectiveness of nitric oxide ozonation
  14. Modelling of nanocrystalline iron nitriding process — influence of specific surface area
  15. Effect of CeO2 and Sb2O3 on the phase transformation and optical properties of photostable titanium dioxide
  16. Carnauba wax microparticles produced by melt dispersion technique
  17. Complexation studies of 3-substituted β-diketones with selected d- and f-metal ions
  18. Influence of the solvent donor number on the O/W partition ratio of Cu(II) complexes of 1,2-dialkylimidazoles
  19. Continuous dialysis of sulphuric acid in the presence of zinc sulphate
  20. Differences in affinity of arylstilbazolium derivatives to tetraplex structures
  21. Fast ferritin immunoassay on PDMS microchips
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0099-2/html?lang=de
Button zum nach oben scrollen