Abstract
A heterogeneous sandwich immunoassay of ferritin on a poly(dimethylsiloxane) microfluidic chip is proposed. An undemanding “prepolymerization technique” based on wet treatment of a phosphor bronze substrate was used for the microchip fabrication. Receptor rabbit antibodies were immobilized via passive sorption directly on microchannel walls. After the incubation of ferritin samples, secondary biotinylated antibodies were introduced. A solution of avidin molecules labeled by fluorescein isothiocyanate was finally added into the microchannels. Lamp-based fluorescence detection of the immunocomplex was then carried out. Dynamic detection range of the method was in the interval from 100 ng mL−1 to 10 μg mL−1.
[1] Connatser, R. M., Riddle, L. A., & Sepaniak, M. J. (2004). Metal-polymer nanocomposites for integrated microfluidic separations and surface enhanced Raman spectroscopic detection. Journal of Separation Science, 27, 1545–1550. DOI: 10.1002/jssc.200401886. http://dx.doi.org/10.1002/jssc.20040188610.1002/jssc.200401886Suche in Google Scholar PubMed
[2] Erhardt, J. G., Estes, J. E., Pfeiffer, C. M., Biesalski, H. K., & Craft, N. E. (2004). Combined measurement of ferritin, soluble transferrin receptor, retinol binding protein, and C-reactive protein by an inexpensive, sensitive, and simple sandwich enzyme-linked immunosorbent assay technique. The Journal of Nutrition, 137, 3127–3132. 10.1093/jn/134.11.3127Suche in Google Scholar PubMed
[3] Ferrari, F., Foglieni, B., Arosio, P., Camaschella, C., Daraio, F., Levi, S., García Erce, J. A., Beaumont, C., Cazzola, M., Ferrari, M., & Cremonesi, L. (2006). Microelectronic DNA chip for hereditary hyperferritinemia cataract syndrome, a model for large-scale analysis of disorders of iron metabolism. Human Mutation, 27, 201–208. DOI: 10.1002/humu.20294. http://dx.doi.org/10.1002/humu.2029410.1002/humu.20294Suche in Google Scholar PubMed
[4] Gersten, T., & Zieve, D. (2010, January). Ferritin. In Medline-Plus Medical Encyclopedia. Bethesda, MD, USA: U.S. National Library of Medicine. Retrieved July 23, 2010, from http://www.nlm.nih.gov/medlineplus/ency/article/003490.htm Suche in Google Scholar
[5] Götz, S., & Karst, U. (2007). Recent developments in optical detection methods for microchip separations. Analytical & Bioanalytical Chemistry, 387, 183–192. DOI: 10.1007/s00216-006-0820-8. http://dx.doi.org/10.1007/s00216-006-0820-810.1007/s00216-006-0820-8Suche in Google Scholar PubMed PubMed Central
[6] Guo, Y., Uchiyama, K., Nakagama, T., Shimosaka, T., & Hobo, T. (2005). An integrated microfluidic device in polyester for electrophoretic analysis of amino acids. Electrophoresis, 26, 1843–1848. DOI: 10.1002/elps.200410126. http://dx.doi.org/10.1002/elps.20041012610.1002/elps.200410126Suche in Google Scholar PubMed
[7] Henares, T. G., Mizutani, F., & Hisamoto, H. (2008). Current development in microfluidic immunosensing chip. Analytica Chimica Acta, 611, 17–30. DOI: 10.1016/j.aca.2008.01.064. http://dx.doi.org/10.1016/j.aca.2008.01.06410.1016/j.aca.2008.01.064Suche in Google Scholar PubMed
[8] Kanda, V., Kariuki, J. K., Harrison, D. J., & McDermott, M. T. (2004). Label-free reading of microarray-based immunoassays with surface plasmon resonance imaging. Analytical Chemistry, 76, 7257–7262. DOI: 10.1021/ac049318q. http://dx.doi.org/10.1021/ac049318q10.1021/ac049318qSuche in Google Scholar PubMed
[9] Kartalov, E. P., Zhong, J. F., Scherer, A., Quake, S. R., Taylor, C. R., & Anderson, W. F. (2006). High-throughput multiantigen microfluidic fluorescence immunoassays. BioTechniques, 40, 85–90. DOI: 10.2144/000112071. http://dx.doi.org/10.2144/00011207110.2144/000112071Suche in Google Scholar PubMed
[10] Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R., & Feld, M. S. (2002). Surface-enhanced Raman scattering and biophysics. Journal of Physics: Condensed Matter, 14, R597–R624. DOI: 10.1088/0953-8984/14/18/202. http://dx.doi.org/10.1088/0953-8984/14/18/20210.1088/0953-8984/14/18/202Suche in Google Scholar
[11] Ko, J. S., Yoon, H. C., Yang, H., Pyo, H.-B., Chung, K. H., Kim, S. J., & Kim, Y. T. (2003). A polymer-based microfluidic device for immunosensing biochips. Lab on a Chip, 3, 106–113. DOI: 10.1039/b301794j. http://dx.doi.org/10.1039/b301794j10.1039/b301794jSuche in Google Scholar PubMed
[12] Kong, J., Jiang, L., Su, X. O., Qin, J. H., Du, Y. G., & Lin, B. C. (2009). Integrated microfluidic immunoassay for the rapid determination of clenbuterol. Lab on a Chip, 9, 1541–1547. DOI: 10.1039/b818430e. http://dx.doi.org/10.1039/b818430e10.1039/b818430eSuche in Google Scholar
[13] Laiwattanapaisal, W., Songjaroen, T., Maturos, T., Lomas, T., Sappat, A., & Tuantranont, A. (2009). On-chip immunoassay for determination of urinary albumin. Sensors, 9, 10066–10079. DOI: 10.3390/s91210066. http://dx.doi.org/10.3390/s9121006610.3390/s91210066Suche in Google Scholar
[14] Lee, K.-H., Su, Y.-D., Chen, S.-J., Tseng, F.-G., & Lee, G.-B. (2007). Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay. Biosensors & Bioelectronics, 23, 466–472. DOI: 10.1016/j.bios.2007.05.007. http://dx.doi.org/10.1016/j.bios.2007.05.00710.1016/j.bios.2007.05.007Suche in Google Scholar
[15] Lin, D. H., Taylor, C. R., Anderson, W. F., Scherer, A., & Kartalov, E. P. (2010). Internally calibrated quantification of VEGF in human plasma by fluorescence immunoassays in disposable elastomeric microfluidic devices. Journal of Chromatography B, 878, 258–263. DOI: 10.1016/j.jchromb.2009.08.038. http://dx.doi.org/10.1016/j.jchromb.2009.08.03810.1016/j.jchromb.2009.08.038Suche in Google Scholar
[16] McCreedy, T., & Wilson, N. G. (2001). Microfabricated reactors for on-chip heterogeneous catalysis. Analyst, 126, 21–23. DOI: 10.1039/b007223k. http://dx.doi.org/10.1039/b007223k10.1039/b007223kSuche in Google Scholar
[17] McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H., Schueller, O. J. A., & Whitesides, G. M. (2000). Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis, 21, 27–40. DOI: 10.1002/(SICI)1522-2683(20000101)21:1〈27::AID-ELPS27〉3.0.CO;2-C. http://dx.doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-CSuche in Google Scholar
[18] Phillips, T. M., & Wellner, E. F. (2007). Analysis of in-flammatory biomarkers from tissue biopsies by chip-based immunoaffinity CE. Electrophoresis, 28, 3041–3048. DOI: 10.1002/elps.200700193. http://dx.doi.org/10.1002/elps.20070019310.1002/elps.200700193Suche in Google Scholar
[19] Přibyl, M., Knápková, V., Šnita, D., & Marek, M. (2006). Modeling reaction-transport processes in a microcapillary biosensor for detection of human IgG. Microelectronic Engineering, 83, 1660–1663. DOI: 10.1016/j.mee.2006.01.186. http://dx.doi.org/10.1016/j.mee.2006.01.18610.1016/j.mee.2006.01.186Suche in Google Scholar
[20] Přibyl, M., Knápková, V., Šnita, D., & Marek, M. (2005). Analysis of reaction-transport phenomena in a microfluidic system for the detection of IgG. Chemical Papers, 59, 434–440. Suche in Google Scholar
[21] Přibyl, M., Šnita, D., Hasal, P., & Marek, M. (2004). Modeling of electric-field driven transport processes in microdevices for immunoassay. Chemical Engineering Journal, 101, 303–314. DOI: 10.1016/j.cej.2003.10.013. http://dx.doi.org/10.1016/j.cej.2003.10.01310.1016/j.cej.2003.10.013Suche in Google Scholar
[22] Schrott, W., Svoboda, M., Slouka, Z., Přibyl, M., & Šnita, D. (2010). PDMS microfluidic chips prepared by a novel casting and pre-polymerization method. Microelectronic Engineering, 87, 1600–1602. DOI: 10.1016/j.mee.2009.10.049. http://dx.doi.org/10.1016/j.mee.2009.10.04910.1016/j.mee.2009.10.049Suche in Google Scholar
[23] Štěpánek, J., Přibyl, M., Šnita, D., & Marek, M. (2007). Microfluidic chip for fast bioassays—evaluation of binding parameters. Biomicrofluidics, 1, 024101. DOI: 10.1063/1.2723647. http://dx.doi.org/10.1063/1.272364710.1063/1.2723647Suche in Google Scholar PubMed PubMed Central
[24] Tsukagoshi, K., Jinno, N., & Nakajima, R. (2005). Development of a micro total analysis system incorporating chemiluminescence detection and application to detection of cancer markers. Analytical Chemistry, 77, 1684–1688. DOI: 10.1021/ac040133t. http://dx.doi.org/10.1021/ac040133t10.1021/ac040133tSuche in Google Scholar PubMed
[25] Varjo, S. J. O., Ludwig, M., Belder, D., & Riekkola, M.-L. (2004). Separation of fluorescein isothiocyanate-labeled amines by microchip electrophoresis in uncoated and polyvinyl alcohol-coated glass chips using water and dimethyl sulfoxide as solvents of background electrolyte. Electrophoresis, 25, 1901–1906. DOI: 10.1002/elps.200405914. http://dx.doi.org/10.1002/elps.20040591410.1002/elps.200405914Suche in Google Scholar PubMed
[26] Xu, X., Li, L., & Weber, S. G. (2007). Electrochemical and optical detectors for capillary and chip separations. TrAC-Trends in Analytical Chemistry, 26, 68–79. DOI: 10.1016/j.trac.2006.11.015. http://dx.doi.org/10.1016/j.trac.2006.11.01510.1016/j.trac.2006.11.015Suche in Google Scholar PubMed PubMed Central
[27] Zhang, F., Gates, R. J., Smentkowski, V. S., Natarajan, S., Gale, B. K., Watt, R. K., Asplund, M. C., & Linford, M. R. (2007). Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays. Journal of the American Chemical Society, 129, 9252–9253. DOI: 10.1021/ja072250m. http://dx.doi.org/10.1021/ja072250m10.1021/ja072250mSuche in Google Scholar PubMed
© 2010 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi
- Predicting retention indices of aliphatic hydrocarbons on stationary phases modified with metallocyclams using quantitative structure-retention relationships
- New SPME fibre for analysis of mequinol emitted from DVDs
- Continuous production of citric acid from raw glycerol by Yarrowia lipolytica in cell recycle cultivation
- Enhancing the production of gamma-linolenic acid in Hansenula polymorpha by fed-batch fermentation using response surface methodology
- Process characteristics for a gas—liquid system agitated in a vessel equipped with a turbine impeller and tubular baffles
- Kinetic study of pyrolysis of waste water treatment plant sludge
- Transport phenomena in an agitated vessel with an eccentrically located impeller
- Membrane extraction of 1-phenylethanol from fermentation solution
- Theoretical study on transesterification in a combined process consisting of a reactive distillation column and a pervaporation unit
- Wall effects on terminal falling velocity of spherical particles moving in a Carreau model fluid
- The effect of the physical properties of the liquid phase on the gas-liquid mass transfer coefficient in two- and three-phase agitated systems
- Effectiveness of nitric oxide ozonation
- Modelling of nanocrystalline iron nitriding process — influence of specific surface area
- Effect of CeO2 and Sb2O3 on the phase transformation and optical properties of photostable titanium dioxide
- Carnauba wax microparticles produced by melt dispersion technique
- Complexation studies of 3-substituted β-diketones with selected d- and f-metal ions
- Influence of the solvent donor number on the O/W partition ratio of Cu(II) complexes of 1,2-dialkylimidazoles
- Continuous dialysis of sulphuric acid in the presence of zinc sulphate
- Differences in affinity of arylstilbazolium derivatives to tetraplex structures
- Fast ferritin immunoassay on PDMS microchips
Artikel in diesem Heft
- Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi
- Predicting retention indices of aliphatic hydrocarbons on stationary phases modified with metallocyclams using quantitative structure-retention relationships
- New SPME fibre for analysis of mequinol emitted from DVDs
- Continuous production of citric acid from raw glycerol by Yarrowia lipolytica in cell recycle cultivation
- Enhancing the production of gamma-linolenic acid in Hansenula polymorpha by fed-batch fermentation using response surface methodology
- Process characteristics for a gas—liquid system agitated in a vessel equipped with a turbine impeller and tubular baffles
- Kinetic study of pyrolysis of waste water treatment plant sludge
- Transport phenomena in an agitated vessel with an eccentrically located impeller
- Membrane extraction of 1-phenylethanol from fermentation solution
- Theoretical study on transesterification in a combined process consisting of a reactive distillation column and a pervaporation unit
- Wall effects on terminal falling velocity of spherical particles moving in a Carreau model fluid
- The effect of the physical properties of the liquid phase on the gas-liquid mass transfer coefficient in two- and three-phase agitated systems
- Effectiveness of nitric oxide ozonation
- Modelling of nanocrystalline iron nitriding process — influence of specific surface area
- Effect of CeO2 and Sb2O3 on the phase transformation and optical properties of photostable titanium dioxide
- Carnauba wax microparticles produced by melt dispersion technique
- Complexation studies of 3-substituted β-diketones with selected d- and f-metal ions
- Influence of the solvent donor number on the O/W partition ratio of Cu(II) complexes of 1,2-dialkylimidazoles
- Continuous dialysis of sulphuric acid in the presence of zinc sulphate
- Differences in affinity of arylstilbazolium derivatives to tetraplex structures
- Fast ferritin immunoassay on PDMS microchips