Abstract
A simple, sensitive and accurate spectrophotometric method for the determination of sulphonamides (sulphamethoxazole (SMZ), sulphaguanidine (SGD), sulphaquinoxaline sodium (SQX), sulphametrole (SMR), and sulphadimidine sodium (SDD)) has been developed. The charge-transfer reactions between sulphonamides as n-electron donors and 7,7,8,8-tetracyanoquinodimethane (TCNQ), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), and 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (chloranilic acid, p-CLA) as π-acceptors resulting in highly coloured complexes were studied. Experimental conditions for these CT reactions were carefully optimised. Beer’s law is valid over the concentration ranges from 4–280 µg mL−1, 4–260 µg mL−1, 4–200 µg mL−1, and 4–200 µg mL−1 of SMZ, SGD, SQX, and SDD using DDQ reagent, respectively. While the calibration curves are linear in the concentration ranges from 4–180 µg mL−1, 4–80 µg mL−1, 4–60 µg mL−1, 4–180 µg mL−1, and 4–60 µg mL−1 of SMZ, SGD, SQX, SMR, and SDD, respectively, using TCNQ reagent and from 4–380 µg mL−1 and 4–300 µg mL−1 of SQX and SDD, respectively, using p-CLA reagent, respectively. Different analytical parameters, namely molar absorptivity (ε), standard deviation, relative standard deviation, correlation coefficient, limit of detection, and limit of quantification, were calculated. The results obtained by the proposed methods are in good agreement with those obtained by the official method as indicated by the percent recovery values.
[1] Abdel-Hamid, M. E., Abdel-Salam, M., Mahrous, M. S., & Abdel-Khalek, M. M. (1985). Utility of 2,3-dichloro-5,6-dicyano-p-benzoquinone in assay of codeine, emetine and pilocarpine. Talanta, 32, 1002–1004. DOI: 10.1016/0039-9140(85)80222-8. http://dx.doi.org/10.1016/0039-9140(85)80222-810.1016/0039-9140(85)80222-8Search in Google Scholar
[2] Abdel-Salam, M. A., Issa, A. S., Mahrous, M. S., & Abdel-Hamid, M. E. (1985). Spectrophotometric determination of some tranquillizers and antidepressants using 2,3-dichloro-5,6-dicyano-p-benzoquinone. Analytical Letters, 18, 1391–1403. DOI: 10.1080/00032718508066219. 10.1080/00032718508066219Search in Google Scholar
[3] Agarwal, S. P., & Elsayed, M. A.-H. (1981). Utility of π-acceptors in charge-transfer complexation of alkaloids: chloranilic acid as a spectrophotometric titrant in non-aqueous media. Analyst, 106, 1157–1162. DOI: 10.1039/AN9810601157. http://dx.doi.org/10.1039/an981060115710.1039/AN9810601157Search in Google Scholar
[4] Abdel-Hamid, M. E., & Abuirjeie, M. A. (1988). Utility of iodine and 7,7,8,8-tetracyanoquinodimethane for determination of terfenadine. Talanta, 35, 242–244. DOI: 10.1016/0039-9140(88)80075-4. http://dx.doi.org/10.1016/0039-9140(88)80075-410.1016/0039-9140(88)80075-4Search in Google Scholar
[5] Al-Abachi, M. Q., Salih, E. S., & Salem, M. S. (1990). Application of promethazine hydrochloride as a chromogenic reagent for the spectrophotometric determination of certain sulfonamide drugs. Analytical & Bioanalytical Chemistry, 337, 408–411. DOI: 10.1007/BF00322221. 10.1007/BF00322221Search in Google Scholar
[6] Amer, M. M., Khattab, F. I., & Hassan, N. Y. M. (1989). Spectrophotometric determination of sulphonamides with metol and N-chlorosuccinimide (NCS), dibromohydantoin (DBH) or N-bromosuccinimide (NBS). Egyptian Journal Pharmaceutical Science, 30, 91–101. Search in Google Scholar
[7] Cooper, A. D., Creaser, C. S., Farrington, W. H. H., Tarbin, J. A., & Shearer, G. (1995). Development of multi-residue methodology for the HPLC determination of veterinary drugs in animal tissues. Food Additives & Contaminants: Part A, 12, 167–176. DOI: 10.1080/02652039509374291. 10.1080/02652039509374291Search in Google Scholar
[8] Dinesh, N. D., Nagaraja, P., & Rangappa, K. S. (2002). A facile and highly sensitive spectrophotometric determination of sulfonamides in pure and dosage forms. Proceedings of the National Academy of Sciences, India. Section A: Physical Sciences, 2002(72), 231–239. Search in Google Scholar
[9] Elsayed, M. A., Abdel-Hamid, M. E., Korany, M. A., Abdel-Hay, M. H., & Galal, S. M. (1984). Spectroscopic investigation of the antazoune-p-chloranilic acid reaction product. Spectroscopy Letters, 17, 803–818. DOI: 10.1080/00387018408075707. http://dx.doi.org/10.1080/0038701840807570710.1080/00387018408075707Search in Google Scholar
[10] Elmorsy, K. (2008). Spectrophotometric determination of terfenadine in pharmaceutical preparations by charge-transfer reactions. Talanta, 75, 1167–1174. DOI: 10.1016/j.talanta.2008.01.031. http://dx.doi.org/10.1016/j.talanta.2008.01.03110.1016/j.talanta.2008.01.031Search in Google Scholar
[11] Foster, R. (1969). Organic charge-transfer complexes. New York: Academic Press. Search in Google Scholar
[12] Fogg, A. G., Rahim, A., Yusoff, H. M., Moreira, J. C., & Zhao, R. (1995). Cathodic-stripping-voltammetric determination of sulfonamides as copper(I) complexes at a hangingmercury-drop electrode. Analytical Proceedings, 32, 95–97. DOI: 10.1039/AI9953200095. 10.1039/ai9953200095Search in Google Scholar
[13] Job, P. (1928). Formation and stability of inorganic complexes in solution. Annali di Chimica Applicata, 9, 113–203. Search in Google Scholar
[14] Khashaba, P. Y., El-Shabouri, S. R., Emara, K. M., & Mohamed, A. M. (2000). Analysis of some antifungal drugs by spectrophotometric and spectrofluorimetric methods in different pharmaceutical dosage forms. Journal of Pharmaceutical and Biomedical Analysis, 22, 363–376. DOI: 10.1016/S0731-7085(99)00280-0. http://dx.doi.org/10.1016/S0731-7085(99)00280-010.1016/S0731-7085(99)00280-0Search in Google Scholar
[15] Kotouček, M., Skopalová, J., & Michalková, D. (1997). Electroanalytical study of salazosulphapyridine and biseptol components at the mercury electrode. Analytica Chimica Acta, 353, 61–69. DOI: 10.1016/S0003-2670(97)00381-4. http://dx.doi.org/10.1016/S0003-2670(97)00381-410.1016/S0003-2670(97)00381-4Search in Google Scholar
[16] Luo, Z. F., Zhang, L. Y., Uang, C. B., & Pan, Z. T. (2000). Determination of sulphamethoxazole in Sinomin tablets by micellar-enhanced spectrofluorimetry. Fenxi Shiyanshi, 19, 27–29. Search in Google Scholar
[17] Msagati, T. A. M., & Nindi, M. M. (2004). Multiresidue determination of sulfonamides in a variety of biological matrices by supported liquid membrane with high pressure liquid chromatography-electrospray mass spectrometry detection. Talanta, 64, 87–100. DOI: 10.1016/j.talanta.2004.02.038. http://dx.doi.org/10.1016/j.talanta.2004.02.03810.1016/j.talanta.2004.02.038Search in Google Scholar
[18] Mulliken, R. S. (1950). Structures of complexes formed by halogen molecules with aromatic and with oxygenated solvents. Journal of the American Chemical Society, 72, 600–608. DOI: 10.1021/ja01157a151. http://dx.doi.org/10.1021/ja01157a15110.1021/ja01157a151Search in Google Scholar
[19] Mulliken, R. S., & Pearson, W. B. (1969). Molecular complexes. New York: Wiley. Search in Google Scholar
[20] Muñoz de la Peña, A., Salinas, F., Durán-Merás, I., & Moreno, M. D. (1994). Fluorimetric determination of sulphmetoxazole in pharmaceutical preparations in combination with trimethoprim by inclusion in β-cyclodextrin/urea. Analytical Letters, 27, 1893–1906. DOI: 10.1080/00032719408002639. 10.1080/00032719408002639Search in Google Scholar
[21] Nour El-Dien, F. A., Mohamed, G. G., & Farag, E. Y. Z. A. (2006). Spectrophotometric determination of flucloxacillin anddicloxacillin in pure and dosage forms. Spectrochimica Acta A, 64, 210–215. DOI: 10.1016/j.saa.2005.06.041. http://dx.doi.org/10.1016/j.saa.2005.06.04110.1016/j.saa.2005.06.041Search in Google Scholar
[22] Pecorelli, I., Bibi, R., Fioroni, L., & Galarini, R. (2004). Validation of a confirmatory method for the determination of sulphonamides in muscle according to the European Union regulation 2002/657/EC. Journal of Chromatography A, 1032, 23–29. DOI: 10.1016/j.chroma.2003.11.010. http://dx.doi.org/10.1016/j.chroma.2003.11.01010.1016/j.chroma.2003.11.010Search in Google Scholar
[23] Ren, M. (2004). Voltammetric determination of sulfonamides in milk. Chemia Analityczna, 49, 59–70. Search in Google Scholar
[24] Soliman, S. A., Belal, S., & Bediar, M. (1985). Non-aqueous titrimetric determination of sulphadimidine sodium and sulphadiazine sodium in injections. Analytical Letters, 18, 2497–2505. DOI: 10.1080/00032718508064482. 10.1080/00032718508064482Search in Google Scholar
[25] The United States Pharmacopeia (2006). The United States Pharmacopeia, USP 29, The National Formulary, NF 24. Rockville, MD, USA: U.S. Pharmacopeial Convention. Inc. Search in Google Scholar
[26] Viñas, P., López Erroz, C., Campillo, N., & Hernández-Córdoba, M. (1996). Determination of sulfonamides in foods by liquid chromatography with postcolumn fluorescence derivatization. Journal of Chromatography A, 726, 125–131. DOI: 10.1016/0021-9673(95)01096-3. http://dx.doi.org/10.1016/0021-9673(95)01096-310.1016/0021-9673(95)01096-3Search in Google Scholar
[27] Vogel, A. I., Tatchell, A. R., Furnis, B. S., Hannaford, A. J., & Smith, P. W. G. (1989). Vogel’s textbook of practical organic chemistry (5th ed.) (pp. 1442–1444). England: Longman Group UK Ltd. Search in Google Scholar
[28] Vosburgh, W. C., & Cooper, G. R. (1941). Complex ions. I. The identification of complex ions in solution by spectrophotometric measurements. Journal of the American Chemical Society, 63, 437–442. DOI: 10.1021/ja01847a025. http://dx.doi.org/10.1021/ja01847a02510.1021/ja01847a025Search in Google Scholar
[29] Xu, W. H., Lin, L. M., Zhu, X. B., & Wang, X. T. (2004). Simultaneous determination of 14 sulfonamides residues in aquatic products by HPLC. Fenxi Ceshi Xuebao, 23, 122–124. Search in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Utilization of solid phase spectrophotometry for the determination of trace amounts of copper using 5-(2-benzothiazolylazo)-8-hydroxyquinoline
- Analysis of spectinomycin in fermentation broth by reversed-phase chromatography
- An amperometric sensor for uric acid based on ordered mesoporous carbon-modified pyrolytic graphite electrode
- Utility of π-acceptor reagents for spectrophotometric determination of sulphonamide drugs via charge-transfer complex formation
- A graph theoretical approach to the effect of mutation on the flexibility of the DNA binding domain of p53 protein
- Aquaculture by-product: a source of proteolytic enzymes for detergent additives
- Effect of anthraquinone on brightness value and crystalline structure of pulp during soda processes
- Selection of a method for determination of activity of pectinolytic enzymes in berry fruit materials
- Study on polymeric micelles of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and its mixtures with poly(γ-benzyl l-glutamate) homopolymer in ethanol
- Synthesis and characterization of mesoporous molecular sieves
- Growth mechanism and characterization of ZnO nano-tubes synthesized using the hydrothermal-etching method
- Novel use of silicon nanocrystals and nanodiamonds in biology
- Fluoride anion sensing using colorimetric reagents containing binaphthyl moiety and urea binding site
- Spectrophotometric methods for sertraline hydrochloride and/or clidinium bromide determination in bulk and pharmaceutical preparations
- Study of physicochemical properties-antitubercular activity relationship of naphthalene-1,4-dione analogs: A QSAR approach
- Spectroscopic study of protonation of oligonucleotides containing adenine and cytosine
- Rheological properties of doughs with buckwheat and quinoa additives
- Synthesis and isolation of methyl bismuth cysteine and its definitive identification by high resolution mass spectrometry
Articles in the same Issue
- Utilization of solid phase spectrophotometry for the determination of trace amounts of copper using 5-(2-benzothiazolylazo)-8-hydroxyquinoline
- Analysis of spectinomycin in fermentation broth by reversed-phase chromatography
- An amperometric sensor for uric acid based on ordered mesoporous carbon-modified pyrolytic graphite electrode
- Utility of π-acceptor reagents for spectrophotometric determination of sulphonamide drugs via charge-transfer complex formation
- A graph theoretical approach to the effect of mutation on the flexibility of the DNA binding domain of p53 protein
- Aquaculture by-product: a source of proteolytic enzymes for detergent additives
- Effect of anthraquinone on brightness value and crystalline structure of pulp during soda processes
- Selection of a method for determination of activity of pectinolytic enzymes in berry fruit materials
- Study on polymeric micelles of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and its mixtures with poly(γ-benzyl l-glutamate) homopolymer in ethanol
- Synthesis and characterization of mesoporous molecular sieves
- Growth mechanism and characterization of ZnO nano-tubes synthesized using the hydrothermal-etching method
- Novel use of silicon nanocrystals and nanodiamonds in biology
- Fluoride anion sensing using colorimetric reagents containing binaphthyl moiety and urea binding site
- Spectrophotometric methods for sertraline hydrochloride and/or clidinium bromide determination in bulk and pharmaceutical preparations
- Study of physicochemical properties-antitubercular activity relationship of naphthalene-1,4-dione analogs: A QSAR approach
- Spectroscopic study of protonation of oligonucleotides containing adenine and cytosine
- Rheological properties of doughs with buckwheat and quinoa additives
- Synthesis and isolation of methyl bismuth cysteine and its definitive identification by high resolution mass spectrometry