Home Fluoride anion sensing using colorimetric reagents containing binaphthyl moiety and urea binding site
Article
Licensed
Unlicensed Requires Authentication

Fluoride anion sensing using colorimetric reagents containing binaphthyl moiety and urea binding site

  • Roman Mikláš EMAIL logo , Peter Kasák , Ferdinand Devínsky and Martin Putala
Published/Copyright: October 8, 2009
Become an author with De Gruyter Brill

Abstract

Four 1,1′-binaphthalene based bis-urea derivatives bearing aryl groups at end-on nitrogen atoms IIIa–d were synthesized as potential sensor molecules. These receptors show characteristic UV-VIS spectral changes on complexation with anions and they exhibit selective recognition of F− over other halide anions. Interaction of a fluoride anion with urea NH groups was confirmed by 1H NMR data. The presence of an electron-withdrawing nitro group in N′-aryls (receptors IIIa and IIIb) appeared to be necessary for naked-eye colorimetric detection. These receptors show dramatic color change from light-yellow to orange (IIIa) or to orange-red (IIIb) in the presence of guest fluoride anions already at concentrations of 10−5 mol dm−3 of the receptor and host.

[1] Alfonso, I., Dietrich, B., Rebolledo, F., Gotor, V., & Lehn, J.-M. (2001). Optically active hexaazamacrocycles: Protonation behavior and chiral-anion recognition. Helvetica Chimica Acta, 84, 280–295. DOI: 10.1002/1522-2675(20010228)84:2 〈280::AID-HLCA280〉3.0.CO;2-O. http://dx.doi.org/10.1002/1522-2675(20010228)84:2<280::AID-HLCA280>3.0.CO;2-O10.1002/1522-2675(20010228)84:2<280::AID-HLCA280>3.0.CO;2-OSearch in Google Scholar

[2] Beer, P., & Gale, P. A. (2001). Anion recognition and sensing: The state of the art and future perspectives. Angewandte Chemie International Edition, 40, 486–516. DOI: 10.1002/1521-3773(20010202)40:3〈486::AID-ANIE486〉3.0.CO;2-P. http://dx.doi.org/10.1002/1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-P10.1002/1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-PSearch in Google Scholar

[3] Berger, M., & Schmidtchen, F. P. (1999). Zwitterionic guanidinium compounds serve as electroneutral anion hosts. Journal of the American Chemical Society, 121, 9986–9993. DOI: 10.1021/ja992028k. http://dx.doi.org/10.1021/ja992028k10.1021/ja992028kSearch in Google Scholar

[4] Brown, J. K., Berry, M. S., & Murdoch, J. R. (1985). Synthesis of optically-active 2,2′-dihalo-1,1′-binaphthyls via stable diazonium salts. Journal of Organic Chemistry, 50, 4345–4349. DOI: 10.1021/jo00222a029. http://dx.doi.org/10.1021/jo00222a02910.1021/jo00222a029Search in Google Scholar

[5] Chawla, H. M., Shrivastava, R., & Sahu, S. N. (2008). A new class of functionalized calix[4]arenes as neutral receptors for colorimetric detection of fluoride ions. New Journal of Chemistry, 32, 1999–2005. DOI: 10.1039/b800502h. http://dx.doi.org/10.1039/b800502h10.1039/b800502hSearch in Google Scholar

[6] Day, J. K., Bresner, C., Coombs, N. D., Fallis, I. A., Ooi, L.-L., & Aldridge, S. (2008). Colorimetric fluoride ion sensing by polyborylated ferrocenes: Structural influences on thermodynamics and kinetics. Inorganic Chemistry, 47, 793–804. DOI: 10.1021/ic701494p. http://dx.doi.org/10.1021/ic701494p10.1021/ic701494pSearch in Google Scholar

[7] Dos Santos, C. M. G., Glynn, M., McCabe, T., De Melo, J. S. S., Burrows, H. D., & Gunnlaugsson, T. (2008). Synthesis, structural and photophysical evaluations of urea based fluorescent PET sensors for anions. Supramolecular Chemistry, 20, 407–418. DOI: 10.1080/10610270701288045. http://dx.doi.org/10.1080/1061027070128804510.1080/10610270701288045Search in Google Scholar

[8] Dudič, M., Lhoták, P., Stibor, I., Lang, K., & Prošková, P. (2003). Calix[4]arene-porphyrin conjugates as versatile molecular receptors for anions. Organic Leters, 5, 149–152. DOI: 10.1021/ol027175t. http://dx.doi.org/10.1021/ol027175t10.1021/ol027175tSearch in Google Scholar

[9] Fleming, E. M., McCabe, T., & Connon, S. J. (2006). Novel axially chiral bis-arylthiourea-based organocatalyst for asymmetric Friedel-Crafts type reactions. Tetrahedron Letters, 47, 7037–7042. DOI: 10.1016/j.tetlet.2006.07.112. http://dx.doi.org/10.1016/j.tetlet.2006.07.11210.1016/j.tetlet.2006.07.112Search in Google Scholar

[10] Gunnlaugsson, T., Glynn, M., Tocci, G. M., Kruger, P. E., & Pfeffer, F. M. (2006). Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coordination Chemistry Reviews, 250, 3094–3117. DOI: 10.1016/j.ccr.2006.08.017. http://dx.doi.org/10.1016/j.ccr.2006.08.01710.1016/j.ccr.2006.08.017Search in Google Scholar

[11] Kim, E., Kim, H. J., Bae, D. R., Lee, S. J., Cho, E. J., Seo, M. R., Kim, J. S., & Jung, J. H. (2008). Selective fluoride sensing using organic-inorganic hybrid nanomaterials containing anthraquinone. New Journal of Chemistry, 32, 1003–1007. DOI: 10.1039/b714406g. http://dx.doi.org/10.1039/b714406g10.1039/b714406gSearch in Google Scholar

[12] Kondo, S.-I., & Sato, M. (2006). UV-vis and fluorescence spectroscopic detection of anions by the conformational restriction of 2,2′-binaphthalene derivatives bearing thiourea groups through a methylene spacer. Tetrahedron, 62, 4844–4850. DOI: 10.1016/j.tet.2006.03.002. http://dx.doi.org/10.1016/j.tet.2006.03.00210.1016/j.tet.2006.03.002Search in Google Scholar

[13] Lee, D. H., Im, J. H., Lee, J.-H., & Hong, J.-I. (2002). A new fluorescent fluoride chemosensor based on conformational restriction of a biaryl fluorophore. Tetrahedron Letters, 43, 9637–9640. DOI: 10.1016/S0040-4039(02)02443-7. http://dx.doi.org/10.1016/S0040-4039(02)02443-710.1016/S0040-4039(02)02443-7Search in Google Scholar

[14] Lin, Z. H., Ou, S. I., Duan, C. Y., Zhang, B. G., & Bai, Z. P. (2006). Naked-eye detection of fluoride ion in water: a remarkably selective easy-to-prepare test paper. Chemical Communications, 2006, 624–626. DOI: 10.1039/b514337c. 10.1039/b514337cSearch in Google Scholar PubMed

[15] Luxami, V., Sharma, N., & Kumar, S. (2008). Quaternary ammonium salt-based chromogenic and fluorescent chemosensors for fluoride ions. Tetrahedron Letters, 49, 4265–4268. DOI: 10.1016/j.tetlet.2008.04.147. http://dx.doi.org/10.1016/j.tetlet.2008.04.14710.1016/j.tetlet.2008.04.147Search in Google Scholar

[16] March, J. (1992). Advanced organic chemistry (4th ed.) (pp. 1090–1091). New York: John Wiley & Sons. Search in Google Scholar

[17] Martínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and chromogenic chemosensors and reagents for anions. Chemical Reviews, 103, 4419–4476. DOI: 10.1021/cr010421e. http://dx.doi.org/10.1021/cr010421e10.1021/cr010421eSearch in Google Scholar PubMed

[18] Mikláš, R., & Putala, M. (2007). Chiral chemoreceptors based on binaphthyl bisureas. Acta Facultatis Pharmaceuticae Universitatis Comenianae, 54, 146–153. Search in Google Scholar

[19] Ming, Y., Hai, L., Guanhua, Z., & Huakuan, L. (2007). A benzimidazole-based chromogenic anion receptor. Journal of Molecular Recognition, 20, 69–73. DOI: 10.1002/jmr.810. http://dx.doi.org/10.1002/jmr.81010.1002/jmr.810Search in Google Scholar PubMed

[20] Putala, M. (1999). Synthetic approaches to axially chiral C-2-symmetric nonracemic binaphthyl derivatives. Enantiomer, 4, 243–262. Search in Google Scholar

[21] Sasaki, S., Mizuno, M., Naemura, K., & Tobe, Y. (2000). Synthesis and anion-selective complexation of cyclophane-based cyclic thioureas. Journal of Organic Chemistry, 65, 275–283. DOI: 10.1021/jo991237k. http://dx.doi.org/10.1021/jo991237k10.1021/jo991237kSearch in Google Scholar PubMed

[22] Shinoda, S., Tadokoro, M., Tsukube, H., & Arakawa, R. (1998). One-step synthesis of a quaternary tetrapyridinium macrocycle as a new specific receptor of tricarboxylate anions. Chemical Communications, 1998, 181–182. DOI: 10.1039/a707358e. 10.1039/a707358eSearch in Google Scholar

[23] Steed, J. W., & Atwood, J. L. (2000). Supramolecular chemistry: A concise introduction (pp. 197–249). Chichester: John Wiley & Sons Inc. Search in Google Scholar

[24] Stibor, I., Holakovsky, R., Mustafina, A. R., & Lhoták, P. (2004). New ligands for enantioselective recognition of chiral carboxylates based on 1,1′-binaphthalene-2,2′-diamine. Collection of Czechoslovak Chemical Communications, 69, 365–383. DOI: 10.1135/cccc20040365. http://dx.doi.org/10.1135/cccc2004036510.1135/cccc20040365Search in Google Scholar

[25] Stibor, I., & Zlatušková, P. (2005). Chiral recognition of anions. Topics in Current Chemistry, 255, 31–63. DOI: 10.1007/b101161. 10.1007/b101161Search in Google Scholar

[26] Takeuchi, M., Shioya, T., & Swager, T. M. (2001). Allosteric fluoride anion recognition by a doubly strapped porphyrin. Angewandte Chemie International Edition, 40, 3372–3376. DOI: 10.1002/1521-3773(20010917)40:18〈3372::AIDANIE3372〉3.0.CO;2-1. http://dx.doi.org/10.1002/1521-3773(20010917)40:18<3372::AID-ANIE3372>3.0.CO;2-110.1002/1521-3773(20010917)40:18<3372::AID-ANIE3372>3.0.CO;2-1Search in Google Scholar

[27] Werner, F., & Schneider, H.-J. (2000). Complexation of anions including nucleotide anions by open-chain host compounds with amide, urea, and aryl functions. Helvetica Chimica Acta, 83, 465–478. DOI: 10.1002/(SICI)1522-2675(20000216) 83:2〈465::AID-HLCA465〉3.0.CO;2-F. http://dx.doi.org/10.1002/(SICI)1522-2675(20000216)83:2<465::AID-HLCA465>3.0.CO;2-F10.1002/(SICI)1522-2675(20000216)83:2<465::AID-HLCA465>3.0.CO;2-FSearch in Google Scholar

Published Online: 2009-10-8
Published in Print: 2009-12-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Utilization of solid phase spectrophotometry for the determination of trace amounts of copper using 5-(2-benzothiazolylazo)-8-hydroxyquinoline
  2. Analysis of spectinomycin in fermentation broth by reversed-phase chromatography
  3. An amperometric sensor for uric acid based on ordered mesoporous carbon-modified pyrolytic graphite electrode
  4. Utility of π-acceptor reagents for spectrophotometric determination of sulphonamide drugs via charge-transfer complex formation
  5. A graph theoretical approach to the effect of mutation on the flexibility of the DNA binding domain of p53 protein
  6. Aquaculture by-product: a source of proteolytic enzymes for detergent additives
  7. Effect of anthraquinone on brightness value and crystalline structure of pulp during soda processes
  8. Selection of a method for determination of activity of pectinolytic enzymes in berry fruit materials
  9. Study on polymeric micelles of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and its mixtures with poly(γ-benzyl l-glutamate) homopolymer in ethanol
  10. Synthesis and characterization of mesoporous molecular sieves
  11. Growth mechanism and characterization of ZnO nano-tubes synthesized using the hydrothermal-etching method
  12. Novel use of silicon nanocrystals and nanodiamonds in biology
  13. Fluoride anion sensing using colorimetric reagents containing binaphthyl moiety and urea binding site
  14. Spectrophotometric methods for sertraline hydrochloride and/or clidinium bromide determination in bulk and pharmaceutical preparations
  15. Study of physicochemical properties-antitubercular activity relationship of naphthalene-1,4-dione analogs: A QSAR approach
  16. Spectroscopic study of protonation of oligonucleotides containing adenine and cytosine
  17. Rheological properties of doughs with buckwheat and quinoa additives
  18. Synthesis and isolation of methyl bismuth cysteine and its definitive identification by high resolution mass spectrometry
Downloaded on 31.10.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0079-6/html?lang=en
Scroll to top button