Abstract
A novel amperometric sensor for uric acid based on ordered mesoporous carbon modified pyrolytic graphite electrode was developed. Uric acid oxidation was easily catalyzed by this electrode in a phosphate buffer solution at pH 7.0, with an anodic potential decrease about 140 mV compared to bare pyrolytic graphite electrode. The uric acid level was determined by the amperometric method, at a constant potential of 0.31 mV, the catalytic current of uric acid vs. its concentration showed a good linearity in the range of 1.0 × 10−6−1.0 × 10−4 mol L−1, with a correlation coefficient of 0.999. The detection limit was 4.0 × 10−7 mol L−1. The proposed method could be effectively used for uric acid amperometric sensing in human urine.
[1] Ardakani, M. M., Akrami, Z., Kazemian, H., & Zare, H. R. (2006). Electrocatalytic characteristics of uric acid oxidation at graphite-zeolite-modified electrode doped with iron(III). Journal of Electroanalytical Chemistry, 586, 31–38. DOI: 10.1016/j.jelechem.2005.09.015. http://dx.doi.org/10.1016/j.jelechem.2005.09.01510.1016/j.jelechem.2005.09.015Search in Google Scholar
[2] Cunningham, S. K., & Keaveny, T. V. (1978). A two-stage enzymatic method for determination of uric acid and hypoxanthine/xanthine. Clinica Chimica Acta, 86, 217–221. DOI: 10.1016/0009-8981(78)90135-3. http://dx.doi.org/10.1016/0009-8981(78)90135-310.1016/0009-8981(78)90135-3Search in Google Scholar
[3] Czauderna, M., & Kowalczyk, J. (2000). Quantification of allantoin, uric acid, xanthine and hypoxanthine in ovine urine by high-performance liquid chromatography and photodiode array detection. Journal of Chromatography B, 744, 129–138. DOI: 10.1016/S0378-4347(00)00239-5. http://dx.doi.org/10.1016/S0378-4347(00)00239-510.1016/S0378-4347(00)00239-5Search in Google Scholar
[4] Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417, 813–821. DOI: 10.1038/nature00785. http://dx.doi.org/10.1038/nature0078510.1038/nature00785Search in Google Scholar
[5] Ferraris, S. P., Lew, H., & Elsayed, N. M. (1991). Simultaneous determination of inosine, hypoxanthine, xanthine, and uric acid and the effect of metal chelators. Analytical Biochemistry, 195, 116–121. DOI: 10.1016/0003-2697(91)90305-D. http://dx.doi.org/10.1016/0003-2697(91)90305-D10.1016/0003-2697(91)90305-DSearch in Google Scholar
[6] Filisetti-Cozzi, T. M., & Carpita, N. C. (1991). Measurement of uronic acids without interference from neutral sugars. Analytical Biochemistry, 197, 157–162. DOI: 10.1016/0003-2697(91)90372-Z. http://dx.doi.org/10.1016/0003-2697(91)90372-Z10.1016/0003-2697(91)90372-ZSearch in Google Scholar
[7] Hu, G., Ma, Y., Guo, Y., & Shao, S. (2008). Electrocatalytic oxidation and simultaneous determination of uric acid and ascorbic acid on the gold nanoparticles-modified glassy carbon electrode. Electrochimica Acta, 53, 6610–6615. DOI: 10.1016/j.electacta.2008.04.054. http://dx.doi.org/10.1016/j.electacta.2008.04.05410.1016/j.electacta.2008.04.054Search in Google Scholar
[8] Jia, N., Wang, Z., Yang, G., Shen, H., & Zhu, L. (2007). Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine. Electrochemistry Communications, 9, 233–238. DOI: 10.1016/j.elecom.2006.08.050. http://dx.doi.org/10.1016/j.elecom.2006.08.05010.1016/j.elecom.2006.08.050Search in Google Scholar
[9] Jin, W., Li, T.-H., Wang, X.-X., Ji, Y.-B., & Li, X.-T. (2007). Synthesis of ordered mesoporous carbon based on evaporation-induced self-assembly method. Carbon Techniques, 26(6), 16–20. Search in Google Scholar
[10] Joo, S. H., Choi, S. J., Oh, I., Kwak, J., Liu, Z., Terasaki, O., & Ryoo, R. (2001). Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 412, 169–172. DOI: 10.1038/35084046. http://dx.doi.org/10.1038/3508404610.1038/35084046Search in Google Scholar PubMed
[11] Jun, S., Joo, S. H., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z., Ohsuna, T., & Terasaki, O. (2000). Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 122, 10712–10713. DOI: 10.1021/ja002261e. http://dx.doi.org/10.1021/ja002261e10.1021/ja002261eSearch in Google Scholar
[12] Kalimuthu, P., Suresh, D., & John, S. A. (2006). Uric acid determination in the presence of ascorbic acid using self-assembled submonolayer of dimercaptothiadiazole-modified gold electrodes. Analytical Biochemistry, 357, 188–193. DOI: 10.1016/j.ab.2006.07.031. http://dx.doi.org/10.1016/j.ab.2006.07.03110.1016/j.ab.2006.07.031Search in Google Scholar PubMed
[13] Kennedy, L. J., Vijaya, J. J., Kayalvizhi, K., & Sekaran, G. (2007). Adsorption of phenol from aqueous solutions using mesoporous carbon prepared by two-stage process. Chemical Engineering Journal, 132, 279–287. DOI: 10.1016/j.cej.2007.01.009. http://dx.doi.org/10.1016/j.cej.2007.01.00910.1016/j.cej.2007.01.009Search in Google Scholar
[14] Li, Z., Feng, M., & Lu, J. (1998). KMnO4-octylphenyl polygylcol, ether chemiluminescence system for flow injection analysis of uric acid in urine. Microchemical Journal, 59, 278–283. DOI: 10.1006/mchj.1997.1537. http://dx.doi.org/10.1006/mchj.1997.153710.1006/mchj.1997.1537Search in Google Scholar
[15] Lima, P. R., Santos, W. J. R., Oliveira, A. B., Goulart, M. O. F., & Kubota, L. T. (2008). Electrocatalytic activity of 4-nitrophthalonitrile-modified electrode for the L-glutathione detection. Journal of Pharmaceutical and Biomedical Analysis, 47, 758–764. DOI: 10.1016/j.jpba.2008.03.006. http://dx.doi.org/10.1016/j.jpba.2008.03.00610.1016/j.jpba.2008.03.006Search in Google Scholar PubMed
[16] Ndamanisha, J. C., & Guo, L. (2008). Electrochemical determination of uric acid at ordered mesoporous carbon functionalized with ferrocenecarboxylic acid-modified electrode. Biosensors and Bioelectronics, 23, 1680–1685. DOI: 10.1016/j.bios.2008.01.026. http://dx.doi.org/10.1016/j.bios.2008.01.02610.1016/j.bios.2008.01.026Search in Google Scholar PubMed
[17] Pournaghi-Azar, M. H., & Saadatirad, A. (2008). Simultaneous voltammetric and amperometric determination of morphine and codeine using a chemically modified-palladized aluminum electrode. Journal of Electroanalytical Chemistry, 624, 293–298. DOI: 10.1016/j.jelechem.2008.09.016. http://dx.doi.org/10.1016/j.jelechem.2008.09.01610.1016/j.jelechem.2008.09.016Search in Google Scholar
[18] Wang, G., Meng, J., Liu, H., Jiao, S., Zhang, W., Chen, D., & Fang, B. (2008). Determination of uric acid in the presence of ascorbic acid with hexacyanoferrate lanthanum film modified electrode. Electrochimica Acta, 53, 2837–2843. DOI: 10.1016/j.electacta.2007.10.064. http://dx.doi.org/10.1016/j.electacta.2007.10.06410.1016/j.electacta.2007.10.064Search in Google Scholar
[19] Yuan, X., Xing, W., Zhuo, S.-P., Si, W., Gao, X., Han, Z., & Yan, Z.-F. (2008). Adsorption of bulky molecules of nonylphenol ethoxylate on ordered mesoporous carbons. Journal of Colloid and Interface Science, 322, 558–565. DOI: 10.1016/j.jcis.2008.02.032. http://dx.doi.org/10.1016/j.jcis.2008.02.03210.1016/j.jcis.2008.02.032Search in Google Scholar PubMed
[20] Zen, J.-M., Jou, J.-J., & Ilangovan, G. (1998). Selective voltammetric method for uric acid detection using pre-anodized Nafion-coated glassy carbon electrodes. Analyst, 123, 1345–1350. DOI: 10.1039/a801532e. http://dx.doi.org/10.1039/a801532e10.1039/a801532eSearch in Google Scholar
[21] Zhang, Y., Wen, G., Zhou, Y., Shuang, S., Dong, C., & Choi, M. M. F. (2007). Development and analytical application of an uric acid biosensor using an uricase-immobilized eggshell membrane. Biosensors and Bioelectronics, 22, 1791–1797. DOI: 10.1016/j.bios.2006.08.038. http://dx.doi.org/10.1016/j.bios.2006.08.03810.1016/j.bios.2006.08.038Search in Google Scholar PubMed
[22] Zhou, H., Zhu, S., Hibino, M., Honma, I., & Ichihara, M. (2003). Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Advanced Materials, 15, 2107–2111. DOI: 10.1002/adma.200306125. http://dx.doi.org/10.1002/adma.20030612510.1002/adma.200306125Search in Google Scholar
[23] Zhou, M., Ding, J., Guo, L.-P., & Shang, Q.-K. (2007). Electrochemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode. Analytical Chemistry, 79, 5328–5335 DOI: 10.1021/ac0703707. http://dx.doi.org/10.1021/ac070370710.1021/ac0703707Search in Google Scholar PubMed
[24] Zhu, L., Tian, C., Zhu, D., & Yang, R. (2008). Ordered mesoporous carbon paste electrodes for electrochemical sensing and biosensing. Electroanalysis, 20, 1128–1134. DOI: 10.1002/elan.200704162. http://dx.doi.org/10.1002/elan.20070416210.1002/elan.200704162Search in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Utilization of solid phase spectrophotometry for the determination of trace amounts of copper using 5-(2-benzothiazolylazo)-8-hydroxyquinoline
- Analysis of spectinomycin in fermentation broth by reversed-phase chromatography
- An amperometric sensor for uric acid based on ordered mesoporous carbon-modified pyrolytic graphite electrode
- Utility of π-acceptor reagents for spectrophotometric determination of sulphonamide drugs via charge-transfer complex formation
- A graph theoretical approach to the effect of mutation on the flexibility of the DNA binding domain of p53 protein
- Aquaculture by-product: a source of proteolytic enzymes for detergent additives
- Effect of anthraquinone on brightness value and crystalline structure of pulp during soda processes
- Selection of a method for determination of activity of pectinolytic enzymes in berry fruit materials
- Study on polymeric micelles of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and its mixtures with poly(γ-benzyl l-glutamate) homopolymer in ethanol
- Synthesis and characterization of mesoporous molecular sieves
- Growth mechanism and characterization of ZnO nano-tubes synthesized using the hydrothermal-etching method
- Novel use of silicon nanocrystals and nanodiamonds in biology
- Fluoride anion sensing using colorimetric reagents containing binaphthyl moiety and urea binding site
- Spectrophotometric methods for sertraline hydrochloride and/or clidinium bromide determination in bulk and pharmaceutical preparations
- Study of physicochemical properties-antitubercular activity relationship of naphthalene-1,4-dione analogs: A QSAR approach
- Spectroscopic study of protonation of oligonucleotides containing adenine and cytosine
- Rheological properties of doughs with buckwheat and quinoa additives
- Synthesis and isolation of methyl bismuth cysteine and its definitive identification by high resolution mass spectrometry
Articles in the same Issue
- Utilization of solid phase spectrophotometry for the determination of trace amounts of copper using 5-(2-benzothiazolylazo)-8-hydroxyquinoline
- Analysis of spectinomycin in fermentation broth by reversed-phase chromatography
- An amperometric sensor for uric acid based on ordered mesoporous carbon-modified pyrolytic graphite electrode
- Utility of π-acceptor reagents for spectrophotometric determination of sulphonamide drugs via charge-transfer complex formation
- A graph theoretical approach to the effect of mutation on the flexibility of the DNA binding domain of p53 protein
- Aquaculture by-product: a source of proteolytic enzymes for detergent additives
- Effect of anthraquinone on brightness value and crystalline structure of pulp during soda processes
- Selection of a method for determination of activity of pectinolytic enzymes in berry fruit materials
- Study on polymeric micelles of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and its mixtures with poly(γ-benzyl l-glutamate) homopolymer in ethanol
- Synthesis and characterization of mesoporous molecular sieves
- Growth mechanism and characterization of ZnO nano-tubes synthesized using the hydrothermal-etching method
- Novel use of silicon nanocrystals and nanodiamonds in biology
- Fluoride anion sensing using colorimetric reagents containing binaphthyl moiety and urea binding site
- Spectrophotometric methods for sertraline hydrochloride and/or clidinium bromide determination in bulk and pharmaceutical preparations
- Study of physicochemical properties-antitubercular activity relationship of naphthalene-1,4-dione analogs: A QSAR approach
- Spectroscopic study of protonation of oligonucleotides containing adenine and cytosine
- Rheological properties of doughs with buckwheat and quinoa additives
- Synthesis and isolation of methyl bismuth cysteine and its definitive identification by high resolution mass spectrometry