Startseite Heat transfer coefficient and pressure drop during refrigerant R-134a condensation in a plate heat exchanger
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Heat transfer coefficient and pressure drop during refrigerant R-134a condensation in a plate heat exchanger

  • Emila Djordjević EMAIL logo , Stephan Kabelac und Slobodan Šerbanović
Veröffentlicht/Copyright: 1. Februar 2008
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The condensation heat transfer coefficient and the two-phase pressure drop of refrigerant R-134a in a vertical plate heat exchanger were investigated experimentally. The area of the plate was divided into several segments along the vertical axis. For each of the segments, local values of the heat transfer coefficient and frictional pressure drop were calculated and presented as a function of the mean vapor quality in the segment. Owing to the thermocouples installed along the plate surface, it was possible to determine the temperature distribution and vapor quality profile inside the plate. The influences of the mass flux and the heat flux on the heat transfer coefficient and the pressure drop were also taken into account and a comparison with previously published experimental data and literature correlations was carried out.

[1] Andre, M. (2004). Wärmeübergang bei der Verdampfung von Ammoniak in Plattenwärmeübertragern. Ph.D. thesis, Hannover University, Hannover. Suche in Google Scholar

[2] Baehr, H. D., & Stephan, K. (1998) Heat and mass transfer. Berlin: Springer. 10.1007/978-3-662-03659-4Suche in Google Scholar

[3] Collier, J. G. (1981). Convective boiling and condensation, 2nd Edition. New York: McGraw-Hill. Suche in Google Scholar

[4] Djordjević, E., Kabelac, S., & Šerbanović, S. (2006). Heat transfer and pressure drop during evaporation of 1,1,1,2-tetrafluoroethane (R-134a) in a plate heat exchanger. In Proceedings of the 5th International Conference of the Chemical Societies of the South-East European Countries, 10–14 September 2006 (p. 218). Ohrid, Macedonia: Society of Chemists and Technologists of Macedonia. Suche in Google Scholar

[5] Djordjević, E., Kabelac, S., & Šerbanović, S. (2007a). Mean heat transfer coefficients during evaporation of 1,1,1,2-tetrafluoroethane (R-134a) in a plate heat exchanger. Journal of the Serbian Chemical Society, 72, 833–846. DOI: 10.2298/JSC0709833D. http://dx.doi.org/10.2298/JSC0709833D10.2298/JSC0709833DSuche in Google Scholar

[6] Djordjević, E., Kabelac, S., & Šerbanović, S. (2007b). Pressure drop during evaporation of 1,1,1,2-tetrafluoroethane (R-134a) in a plate heat exchanger. Journal of the Serbian Chemical Society 72, 1015–1022. DOI: 10.2298/JSC0710015D. http://dx.doi.org/10.2298/JSC0710015D10.2298/JSC0710015DSuche in Google Scholar

[7] Jokar, A., Eckels, S. J., Hosni, M. H., & Gielda, T. P. (2004). Condensation heat transfer and pressure drop of brazed plate heat exchangers using refrigerant R134a. Journal of Enhanced Heat Transfer, 11, 161–182. DOI: 10.1615/JEnhHeat-Transf.v11.i2.50. http://dx.doi.org/10.1615/JEnhHeatTransf.v11.i2.50Suche in Google Scholar

[8] Kline, S. J., & McClintock, F. A. (1953). Describing uncertainties in single-sample experiments. Mechanical Engineering, 75, 3–8. Suche in Google Scholar

[9] Kuo, W. S., Lie, Y. M., Hsieh, Y. Y., & Lin, T. F. (2005). Condensation heat transfer and pressure drop of refrigerant R410A flow in a vertical plate heat exchanger. International Journal of Heat and Mass Transfer, 48, 5205–5220. DOI: 10.1016/j.ijheatmasstransfer.2005.07.023. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.07.02310.1016/j.ijheatmasstransfer.2005.07.023Suche in Google Scholar

[10] Longo, G. A., Gasparella, A., & Sartori, R. (2004). Experimental heat transfer coefficients during refrigerant vaporisation and condensation inside herringbone-type plate heat exchangers with enhanced surfaces. International Journal of Heat and Mass Transfer, 47, 4125–4136. DOI: 10.1016/j.ijheatmasstransfer.2004.05.001. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.05.00110.1016/j.ijheatmasstransfer.2004.05.001Suche in Google Scholar

[11] McLinden, M. O., Klein, S. A., Lemmon, E. W., & Peskin, A. P. (1998). NIST thermodynamic and transport properties of refrigerant mixtures — REFPROP, Version 6.01, NIST Standard Reference Database 23. Gaithersburg, MD: National Institute of Standards and Technology. Suche in Google Scholar

[12] Moffat, R. J. (1988). Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science, 1, 3–17. DOI: 10.1016/0894-1777(88)90043-X. http://dx.doi.org/10.1016/0894-1777(88)90043-X10.1016/0894-1777(88)90043-XSuche in Google Scholar

[13] Nakaoka, T., & Uehara, H. (1988). Performance test of a shell-and-plate-type condenser for OTEC. Experimental Thermal Fluid Science, 1, 275–281. DOI: 10.1016/0894-1777(88)90007-6. http://dx.doi.org/10.1016/0894-1777(88)90007-610.1016/0894-1777(88)90007-6Suche in Google Scholar

[14] Yan, Y. Y., Lio, H. C., & Lin, T. F. (1999). Condensation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger. International Journal of Heat and Mass Transfer, 42, 993–1006. DOI: 10.1016/S0017-9310(98)00217-8. http://dx.doi.org/10.1016/S0017-9310(98)00217-810.1016/S0017-9310(98)00217-8Suche in Google Scholar

Published Online: 2008-2-1
Published in Print: 2008-2-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-007-0082-8/html?lang=de
Button zum nach oben scrollen