Abstract
At present, carbon dioxide is considered the largest contributor among greenhouse gases. This review covers the current state of problem of carbon dioxide emissions from industrial and combustion processes, the principle of photocatalysis, existing literature related to photocatalytic CO2 reduction over TiO2 based catalysts and the effects of important parameters on the process performance including light wavelength and intensity, type of reductant, metal-modified surface, temperature and pressure.
[1] Adachi, K., Ohta, K., & Mizuno, M. (1994). Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Solar Energy, 53, 187–190. DOI:10.1016/0038-092X(94)90480-4. http://dx.doi.org/10.1016/0038-092X(94)90480-410.1016/0038-092X(94)90480-4Suche in Google Scholar
[2] Anpo, M., Yamashita, H., Ichinashi, Y., & Ehara, S. (1995). Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. Journal of Electroanalytical Chemistry, 396, 21–26. DOI: 10.1016/0022-0728(95)04141-A. http://dx.doi.org/10.1016/0022-0728(95)04141-A10.1016/0022-0728(95)04141-ASuche in Google Scholar
[3] Anpo, M., Yamashita, H., Ichihashi, Y., Fujii, Y., & Honda, M. (1997). Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt. The Journal of Physical Chemistry B, 101, 2632–2636. DOI:10.1021/jp962696h. http://dx.doi.org/10.1021/jp962696h10.1021/jp962696hSuche in Google Scholar
[4] Anpo, M. Yamashita, H., Ikeue, K., Fujii, Y., Zhang, S. G., Ichihashi, Y., G., Park, D. R., Suzuki, Y., Koyano, K., & Tatsumi, T. (1998). Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catalysis Today, 44, 327–332. DOI: 10.1016/S0920-5861(98)00206-5. http://dx.doi.org/10.1016/S0920-5861(98)00206-510.1016/S0920-5861(98)00206-5Suche in Google Scholar
[5] Bhatkhande, D. S., Pangarkar, V. G., & Beenackers, A. A. C. M. (2001). Photocatalytic degradation for environmental applications — a review. Journal of Chemical Technology and Biotechnology, 77, 102–116. DOI: 10.1002/jctb.532. http://dx.doi.org/10.1002/jctb.53210.1002/jctb.532Suche in Google Scholar
[6] Bouras, P., Stathatos, E., & Lianos, P. (2007). Pure versus metal-ion-doped nanocrystalline titania for photocatalysis. Applied Catalysis. B: Environmental, 73, 51–59. DOI:10.1016/j.apcatb.2006.06.007. http://dx.doi.org/10.1016/j.apcatb.2006.06.00710.1016/j.apcatb.2006.06.007Suche in Google Scholar
[7] Dijkstra, J. W., & Jansen, D. (2004). Novel concepts for CO2 capture. Energy, 29, 1249–1257. DOI: 10.1016/j.energy.2004.03.084. http://dx.doi.org/10.1016/j.energy.2004.03.08410.1016/j.energy.2004.03.084Suche in Google Scholar
[8] Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical Reviews, 93, 341–357, DOI:10.1021/cr00017a016. http://dx.doi.org/10.1021/cr00017a01610.1021/cr00017a016Suche in Google Scholar
[9] Fujiwara, H., Hosokawa, H., Murakoshi, K., Wada, Y., & Yanagida, S. (1997). Effect of surface structures on photocatalytic CO2 reduction using quantized CdS nanocrystallites. Journal of Physical Chemistry B, 101, 8270–8278. DOI:10.1021/jp971621q. http://dx.doi.org/10.1021/jp971621q10.1021/jp971621qSuche in Google Scholar
[10] Gokon, N., Hasegawa, N., Kaneko, H., Aoki, H., Tamaura, Y., & Kitamura, M. (2003). Photocatalytic effect of ZnO on carbon gasification with CO2 for high temperature solar thermochemistry. Solar Energy Materials and Solar Cells, 80. 335–341, DOI: 10.1016/j.solmat.2003.08.016. http://dx.doi.org/10.1016/j.solmat.2003.08.01610.1016/j.solmat.2003.08.016Suche in Google Scholar
[11] Iijima, S. (1991). Helical microtubules of graphitic carbon, Nature, 354, 56–58. DOI: 10.1038/354056a0. http://dx.doi.org/10.1038/354056a010.1038/354056a0Suche in Google Scholar
[12] Inoue, T., Fujishima, A., Konishi, S., & Honda, K. (1979). Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277, 637–638. DOI: 10.1038/277637a0. http://dx.doi.org/10.1038/277637a010.1038/277637a0Suche in Google Scholar
[13] Intergovernmental Panel on Climate Change (2005). Special report on carbon dioxide capture and storage. IPCC report. Retrieved January 10, 2007, from http://www.mnp.nl/ipcc/pages_media/SRCCS-final/ccsspm.pdf. Suche in Google Scholar
[14] Kaneco, S., Kurimoto, H., Ohta, K., Mizuno, T., & Saji, A. (1997). Photocatalytic reduction of CO2 using TiO2 powders in liquid medium. Journal of Photochemistry and Photobiology A: Chemistry, 109, 59–63. DOI: 10.1016/S1010-6030(97)00107-X. http://dx.doi.org/10.1016/S1010-6030(97)00107-X10.1016/S1010-6030(97)00107-XSuche in Google Scholar
[15] Kaneco, S., Shimizu, Y., Ohta, K., & Mizuno, T. (1998). Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. Journal of Photochemistry and Photobiology A: Chemistry, 115, 223–226. DOI: 10.1016/S1010-6030(98)00274-3. http://dx.doi.org/10.1016/S1010-6030(98)00274-310.1016/S1010-6030(98)00274-3Suche in Google Scholar
[16] Kaneco, S., Kurimoto, H., Shimizu, Y., Ohta, K., & Mizuno, T. (1999). Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid CO2. Energy, 24, 21–30. DOI:10.1016/S0360-5442(98)00070-X. http://dx.doi.org/10.1016/S0360-5442(98)00070-X10.1016/S0360-5442(98)00070-XSuche in Google Scholar
[17] Kohno, Y., Tanaka, T., Funabiki, T., & Yoshida, S. (1997). Photoreduction of carbon dioxide with hydrogen over ZrO2. Chemical Communications, 1997, 841–844. DOI: 10.1039/a700185a. http://dx.doi.org/10.1039/a700185a10.1039/a700185aSuche in Google Scholar
[18] Kohno, Y., Hayashi, H., Takenaka, S., Tanaka, T., Funabiki, T., & Yoshida, S. (1999). Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 126, 117–124. DOI: 10.1016/S1010-6030(99)00113-6. http://dx.doi.org/10.1016/S1010-6030(99)00113-610.1016/S1010-6030(99)00113-6Suche in Google Scholar
[19] Kohno, Y., Tanaka, T., Funabiki, T., & Yoshida, S. (2000a). Photoreduction of CO2 with H2 over ZrO2. A study on interaction of hydrogen with photoexcited CO2. Physical Chemistry Chemical Physics, 2, 2635–2639. DOI: 10.1039/b001642j. http://dx.doi.org/10.1039/b001642j10.1039/b001642jSuche in Google Scholar
[20] Kohno, Y., Tanaka, T., Funabiki, T., & Yoshida, S. (2000b). Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2. Physical Chemistry Chemical Physics, 2, 5302–5307. DOI: 10.1039/b005315p. http://dx.doi.org/10.1039/b005315p10.1039/b005315pSuche in Google Scholar
[21] Kohno, Y., Ishikawa, H., Tanaka, T., Funabiki, T., & Yoshida, S. (2001). Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Physical Chemistry Chemical Physics, 3, 1108–1113. DOI: 10.1039/b008887k. http://dx.doi.org/10.1039/b008887k10.1039/b008887kSuche in Google Scholar
[22] Kosugi, T., Hayashi, A., Matsumoto, T., Akimoto, K., Tokimatsu, K., Yoshida, H., Tomoda, T., & Kaya, Y. (2004). Time to realization: Evaluation of CO2 capture technology R&Ds by GERT (Graphical Evaluation and Review Technique) analyses. Energy, 29, 1297–1308. DOI:10.1016/j.energy.2004.03.088. http://dx.doi.org/10.1016/j.energy.2004.03.08810.1016/j.energy.2004.03.088Suche in Google Scholar
[23] Lin, W. Y., Han, H. X., & Frei, H. (2004). CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41 silicate sieve. Journal of Physical Chemistry B, 108, 18269–18273. DOI: 10.1021/jp040345u. http://dx.doi.org/10.1021/jp040345u10.1021/jp040345uSuche in Google Scholar
[24] Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 95, 735–758. DOI:10.1021/cr00035a013. http://dx.doi.org/10.1021/cr00035a01310.1021/cr00035a013Suche in Google Scholar
[25] Liu, B.-J., Torimoto, T., Matsumoto, H., & Yoneyama, H. (1997). Effect of solvents on photocatalytic reduction of carbon dioxide using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices. Journal of Photochemistry and Photobiology A: Chemistry, 108, 187–192. DOI: 10.1016/S1010-6030(97)00082-8. http://dx.doi.org/10.1016/S1010-6030(97)00082-810.1016/S1010-6030(97)00082-8Suche in Google Scholar
[26] Liu, B.-J., Torimoto, T., & Yoneyama, H. (1998). Photocatalytic reduction of carbon dioxide in the presence of nitrate using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices. Journal of Photochemistry and Photobiology A: Chemistry, 115, 227–230. DOI: 10.1016/S1010-6030(98)00272-X. http://dx.doi.org/10.1016/S1010-6030(98)00272-X10.1016/S1010-6030(98)00272-XSuche in Google Scholar
[27] Matthews, R. W., & McEvoy, S. R. (1992). A comparison of 254 nm and 350 nm excitation of TiO2 in simple photocatalytic reactors. Journal of Photochemistry and Photobiology A: Chemistry, 66, 355–366. DOI: 10.1016/1010-6030(92)80008-J. http://dx.doi.org/10.1016/1010-6030(92)80008-J10.1016/1010-6030(92)80008-JSuche in Google Scholar
[28] Meisen, A., & Shuai, X. (1997). Research and development issues in CO2 capture. Energy Conversion and Management, 38, S37–S42. DOI: 10.1016/S0196-8904(96)00242-7. http://dx.doi.org/10.1016/S0196-8904(96)00242-710.1016/S0196-8904(96)00242-7Suche in Google Scholar
[29] Metz, B., Davidson, O., Swart, R., & Pan, J. (2001). Climate change 2001: mitigation. Contribution of working groups III to the third assessment report of the Intergovernmental Panel on Climate Change. Retrieved January 10, 2007, from http://www.grida.no/climate/ipcc tar/wg3/index.htm. Suche in Google Scholar
[30] Mizuno, T., Adachi, K., Ohta, K., & Saji, A. (1996). Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry, 98, 87–90. DOI: 10.1016/1010-6030(96)04334-1. http://dx.doi.org/10.1016/1010-6030(96)04334-110.1016/1010-6030(96)04334-1Suche in Google Scholar
[31] Pan, P.-W., & Chen, Y.-W. (2007). Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catalysis Communications, 8, 1546–1549. DOI:10.1016/j.catcom.2007.01.006. http://dx.doi.org/10.1016/j.catcom.2007.01.00610.1016/j.catcom.2007.01.006Suche in Google Scholar
[32] Riemer, P. (1996). Greenhouse gas mitigation technologies, an overview of the CO2 capture, storage and future activities of the IEA Greenhouse Gas R&D programme. Energy Conversion and Management, 37, 665–670. DOI: 10.1016/0196-8904(95)00237-5. http://dx.doi.org/10.1016/0196-8904(95)00237-510.1016/0196-8904(95)00237-5Suche in Google Scholar
[33] Sasirekha, N., Basha, S. J. S., & Shanthi, K. (2006). Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Applied Catalysis B: Environmental, 62, 169–180. DOI: 10.1016/j.apcatb.2005.07.009. http://dx.doi.org/10.1016/j.apcatb.2005.07.00910.1016/j.apcatb.2005.07.009Suche in Google Scholar
[34] Sayama, K., & Arakawa, H. (1993). Photocatalytic decomposition of water and photocatalytic reduction of carbon-dioxide over zirconia catalyst. Journal of Physical Chemistry, 97, 531–533. DOI: 10.1021/j100105a001. http://dx.doi.org/10.1021/j100105a00110.1021/j100105a001Suche in Google Scholar
[35] Subrahmanyam, M., Kaneco, S., & Alonso-Vante, N. (1999). A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity. Applied Catalysis B: Environmental, 23, 169–174. DOI: 10.1016/S0926-3373(99)00079-X. http://dx.doi.org/10.1016/S0926-3373(99)00079-X10.1016/S0926-3373(99)00079-XSuche in Google Scholar
[36] Tan, S. S., Zou, L., & Hu, E. (2006). Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets. Catalysis Today, 115, 269–273. DOI:10.1016/j.cattod.2006.02.057. http://dx.doi.org/10.1016/j.cattod.2006.02.05710.1016/j.cattod.2006.02.057Suche in Google Scholar
[37] Tan, S. S., Zou, L., & Hu, E. (2007). Photosynthesis of hydrogen and methane as key components for clean energy system. Science and Technology of Advanced Materials, 8, 89–92. DOI: 10.1016/j.stam.2006.11.004. http://dx.doi.org/10.1016/j.stam.2006.11.00410.1016/j.stam.2006.11.004Suche in Google Scholar
[38] Teramura, K., Tanaka, T., Ishikawa, H., Kohno, Y., & Funabiki, T. (2004). Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. Journal Physical Chemistry B, 108, 346–354. DOI: 10.1021/jp0362943. http://dx.doi.org/10.1021/jp036294310.1021/jp0362943Suche in Google Scholar
[39] Tseng, I.-H., Chang, W.-C., & Wu, J. C. S. (2002). Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 37, 37–48. DOI: 10.1016/S0926-3373(01)00322-8. http://dx.doi.org/10.1016/S0926-3373(01)00322-810.1016/S0926-3373(01)00322-8Suche in Google Scholar
[40] Tseng, I.-H., Wu, J. C. S., & Chou H.-Y. (2004). Effects of solgel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. Journal of Catalysis, 221, 432–440. DOI:10.1016/j.jcat.2003.09.002. http://dx.doi.org/10.1016/j.jcat.2003.09.00210.1016/j.jcat.2003.09.002Suche in Google Scholar
[41] Ulagappan, N., & Frei, H. (2000). Mechanistic study of CO2 photoreduction in Ti silicalite molecular sieve by FT-IR spectroscopy. Journal of Physical Chemistry A, 104, 7834–7839. DOI: 10.1021/jp001470i. http://dx.doi.org/10.1021/jp001470i10.1021/jp001470iSuche in Google Scholar
[42] Usubharatana, P., McMartin, D., Veawab, A., & Tontiwachwuthikul, P. (2006). Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Industrial & Engineering Chemistry Research, 45, 2558–2568. DOI:10.1021/ie0505763. http://dx.doi.org/10.1021/ie050576310.1021/ie0505763Suche in Google Scholar
[43] Wu, J. C. S., Lin, H.-M., & Lai, C.-L. (2005). Photo reduction of CO2 to methanol using optical-fiber photoreactor. Applied Catalysis A: General, 296, 194–200. DOI:10.1016/j.apcata.2005.08.021. http://dx.doi.org/10.1016/j.apcata.2005.08.02110.1016/j.apcata.2005.08.021Suche in Google Scholar
[44] Xia, X.-H., Jia, Z.-J., Yu, Y., Liang, Y., Wang, Z., & Ma, L.-L. (2007). Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon, 45, 717–721. DOI:10.1016/j.carbon.2006.11.028. http://dx.doi.org/10.1016/j.carbon.2006.11.02810.1016/j.carbon.2006.11.028Suche in Google Scholar
[45] Yamashita, H., Shiga, A., Kawasaki, S., Ichihashi, Y., Ehara, S., & Anpo, M. (1995). Photocatalytic synthesis of CH4 and CH3OH from CO2 and H2O on highly dispersed active titanium oxide catalysts. Energy Conversion, 36, 617–620. DOI:10.1016/0196-8904(95)00081-N. http://dx.doi.org/10.1016/0196-8904(95)00081-N10.1016/0196-8904(95)00081-NSuche in Google Scholar
[46] Yamashita, H., Fujii, Y., Ichinashi, Y., Zhang, S. G., Ikeue, K., Park, D. R., Koyano, K., Tatsumi, T., & Anpo, M. (1998). Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catalysis Today, 45, 221–227. DOI: 10.1016/S0920-5861(98)00219-3. http://dx.doi.org/10.1016/S0920-5861(98)00219-310.1016/S0920-5861(98)00219-3Suche in Google Scholar
[47] Yu, Y., Yu, J. C., Yu, J.-G., Kwok, Y.-C., Che, Y.-K., Zhao, J.-C., Ding, L., Ge, W.-K., & Wong, P.-K. (2005). Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Applied Catalysis A: General, 289, 186–196. DOI: 10.1016/j.apcata.2005.04.057. http://dx.doi.org/10.1016/j.apcata.2005.04.05710.1016/j.apcata.2005.04.057Suche in Google Scholar
© 2008 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Photocatalytic reduction of CO2 over TiO2 based catalysts
- Modeling of enzymatic reaction in an airlift reactor using an axial dispersion model
- Hydrolysis of titanium sulphate compounds
- Mathematical modelling of selected characterisation procedures for oil fractions
- High gravity batch and continuous processes for beer production: Evaluation of fermentation performance and beer quality
- Liquid-liquid equilibria of butyric acid for solvents containing a phosphonium ionic liquid
- HAZOP study of a fixed bed reactor for MTBE synthesis using a dynamic approach
- Influence of the reactive distillation column configuration on its performance: A computational study
- Reactive distillation — experimental data for propyl propionate synthesis
- Mixing time of a non-Newtonian liquid in an unbaffled agitated vessel with an eccentric propeller
- Heat transfer coefficient and pressure drop during refrigerant R-134a condensation in a plate heat exchanger
- Pore structure of pyrolyzed scrap tires
- Distribution of local heat transfer coefficient values in the wall region of an agitated vessel
- Chemical pretreatment of feed water for membrane distillation
- Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts
- Validation of the Tessier scheme for speciation of metals in soil using the Bland and Altman test
- Production of potassium sulfate from potassium hydrosulfate solutions using alcohols
Artikel in diesem Heft
- Photocatalytic reduction of CO2 over TiO2 based catalysts
- Modeling of enzymatic reaction in an airlift reactor using an axial dispersion model
- Hydrolysis of titanium sulphate compounds
- Mathematical modelling of selected characterisation procedures for oil fractions
- High gravity batch and continuous processes for beer production: Evaluation of fermentation performance and beer quality
- Liquid-liquid equilibria of butyric acid for solvents containing a phosphonium ionic liquid
- HAZOP study of a fixed bed reactor for MTBE synthesis using a dynamic approach
- Influence of the reactive distillation column configuration on its performance: A computational study
- Reactive distillation — experimental data for propyl propionate synthesis
- Mixing time of a non-Newtonian liquid in an unbaffled agitated vessel with an eccentric propeller
- Heat transfer coefficient and pressure drop during refrigerant R-134a condensation in a plate heat exchanger
- Pore structure of pyrolyzed scrap tires
- Distribution of local heat transfer coefficient values in the wall region of an agitated vessel
- Chemical pretreatment of feed water for membrane distillation
- Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts
- Validation of the Tessier scheme for speciation of metals in soil using the Bland and Altman test
- Production of potassium sulfate from potassium hydrosulfate solutions using alcohols