Abstract
The electrochemical performances of Co3O4 nanopowders, obtained by the sol-gel method, were investigated and compared with those of commercial Co3O4 powders, for oxygen evolution reaction in alkaline solution. The active oxide powder was mixed with teflon and assembled on Ti substrate to form thin catalyst film. Cyclic voltammetry, polarization curves, and electrochemical impedance spectroscopy were used to assess the mechanism of oxygen evolution reaction, chemical structure, and morphology of the catalyst.
[1] Electrodes of Conductive Metallic Oxides, Parts A and B (Trasatti, S. Editor). Elsevier, Amsterdam, 1981. Suche in Google Scholar
[2] O’Grady, W. E., Iwakura, C., Huang, J., and Yeager, E., in Electrocatalysis (Breiter, M. W., Editor), p. 286. The Electrochemical Society, Pentagon, NJ, 1977. Suche in Google Scholar
[3] Performance of Electrodes for Industrial Electrochemical Processes (Hine, F., Tilak, B. V., Denton, J. M., and Lisius, J. D., Editors). The Electrochemical Society, Pentagon, NJ, 1989. Suche in Google Scholar
[4] Veggetti, E., Kodintsev, I. M., and Trasatti, S., J. Electroanal. Chem. 339, 255 (1992). http://dx.doi.org/10.1016/0022-0728(92)80456-E10.1016/0022-0728(92)80456-ESuche in Google Scholar
[5] Trasatti, S., in Electrochemistry of Novel Materials (Lipkowski, J. and Ross, P. N., Editors), p. 207. VCH, New York, 1994. Suche in Google Scholar
[6] De Faria, L. A., Prestat, M., Koenig, J.-F., Chartier, P., and Trasatti, S., Electrochim. Acta 44, 1481 (1998). http://dx.doi.org/10.1016/S0013-4686(98)00271-010.1016/S0013-4686(98)00271-0Suche in Google Scholar
[7] Boggio, R., Carugati, A., and Trasatti, S., J. Appl. Electrochem. 17, 828 (1987). http://dx.doi.org/10.1007/BF0100782110.1007/BF01007821Suche in Google Scholar
[8] Singh, R. N., Hamdani, M., Koenig, J. F., Poillerat, G., Gautier, J. L., and Chartier, P., J. Appl. Electrochem. 20, 442 (1990). http://dx.doi.org/10.1007/BF0107605310.1007/BF01076053Suche in Google Scholar
[9] Singh, R. N., Pandey, J. P., Singh, N. K., Lal, B., Chartier, P., and Koenig, J. F., Electrochim. Acta 45, 1911 (2000). http://dx.doi.org/10.1016/S0013-4686(99)00413-210.1016/S0013-4686(99)00413-2Suche in Google Scholar
[10] Conway, B. E., in Electrodes of Conductive Metallic Oxides, Part B (Trasatti, S. Editor), p. 433. Elsevier, Amsterdam, 1981. Suche in Google Scholar
[11] O’sullivan, E. J. M. and Calvo, E. J., in Comprehensive Chemical Kinetics, Vol. 27 (Compton, R. G., Editor), p. 274. Elsevier, Amsterdam, 1987. Suche in Google Scholar
[12] Conway, B. E. and Liu, T. C., Ber. Bunsen.-Ges. Phys. Chem. 91, 461 (1987). Suche in Google Scholar
[13] Tejuca, L. G., Fierro, J. L. F., and Tascon, J. M., Advances in Catalysis, Vol. 36. Academic Press, New York, 1989. Suche in Google Scholar
[14] Singh, S. P., Samuels, S., Tiwari, S. K., and Singh, R. N., Int. J. Hydrogen Energy 21, 171 (1996). http://dx.doi.org/10.1016/0360-3199(95)00062-310.1016/0360-3199(95)00062-3Suche in Google Scholar
[15] Svegl, F., Orel, B., Grabec-Svegl, I., and Kaucic, V., Electrochim. Acta 45, 4359 (2000). http://dx.doi.org/10.1016/S0013-4686(00)00543-010.1016/S0013-4686(00)00543-0Suche in Google Scholar
[16] Singh, N. K., Singh, J. P., and Singh, R. N., Int. J. Hydrogen Energy 27, 895 (2002). http://dx.doi.org/10.1016/S0360-3199(01)00193-810.1016/S0360-3199(01)00193-8Suche in Google Scholar
[17] Castro, E. B. and Gervasi, C. A., Int. J. Hydrogen Energy 25, 1163 (2000). http://dx.doi.org/10.1016/S0360-3199(00)00033-110.1016/S0360-3199(00)00033-1Suche in Google Scholar
[18] Ito, M., Murakami, Y., Kaji, H., Ohkawauchi, H., Yahikozawa, K., and Takasu, Y., J. Electrochem. Soc. 141, 1243 (1994). http://dx.doi.org/10.1149/1.205490310.1149/1.2054903Suche in Google Scholar
[19] Takasu, Y., Onove, S., Kameyama, K., Murakami, Y., and Yahikozawa, K., Electrochim. Acta 39, 91 (1994). http://dx.doi.org/10.1016/0013-4686(94)85079-810.1016/0013-4686(94)85079-8Suche in Google Scholar
[20] de Vidales, M. J. L., Gracia-Martinez, O., Vila, E., Rojas, R. N., and Torralvo, M. J., Mater. Res. Bull. 28, 1135 (1993). http://dx.doi.org/10.1016/0025-5408(93)90093-S10.1016/0025-5408(93)90093-SSuche in Google Scholar
[21] Cannas, C., Musinu, A., Peddis, D., and Piccaluga, G., J. Nanopart. Res. 6, 223 (2004). http://dx.doi.org/10.1023/B:NANO.0000034679.22546.d710.1023/B:NANO.0000034679.22546.d7Suche in Google Scholar
[22] Alexander, K., X-Ray Diffraction Procedures. Wiley, New York, 1962. Suche in Google Scholar
[23] Casella, I. G., J. Electroanal. Chem. 520, 119 (2002). http://dx.doi.org/10.1016/S0022-0728(02)00642-310.1016/S0022-0728(02)00642-3Suche in Google Scholar
[24] Trasatti, S. and Buzzanca, G., J. Electroanal. Chem. 29, App. 1 (1971). 10.1016/S0022-0728(71)80111-0Suche in Google Scholar
[25] Burke, L. D. and Murphy, O. J., J. Electroanal. Chem. 96, 19 (1979). http://dx.doi.org/10.1016/S0022-0728(79)80299-510.1016/S0022-0728(79)80299-5Suche in Google Scholar
[26] Spinolo, G., Ardizzone, S., and Trasatti, S., J. Electroanal. Chem. 423, 49 (1997). http://dx.doi.org/10.1016/S0022-0728(96)04841-310.1016/S0022-0728(96)04841-3Suche in Google Scholar
[27] Rasiyah, P. and Tseung, A. C. C., J. Electrochem. Soc. 365, 130 (1983). Suche in Google Scholar
[28] Bocca, C., Cerisola, G., Magnone, E., and Barbucci, A., Int. J. Hydrogen Energy 24, 699 (1999). http://dx.doi.org/10.1016/S0360-3199(98)00120-710.1016/S0360-3199(98)00120-7Suche in Google Scholar
[29] Magnone, E., Cerisola, G., Ferretti, M., and Barbucci, A., J. Solid State Chem. 144, 8 (1999). http://dx.doi.org/10.1006/jssc.1998.797010.1006/jssc.1998.7970Suche in Google Scholar
[30] Grenier, J. C., Wattiaux, A., Doumerc, J. P., Dordor, P., Fournes, L., Chaminade, J. P., and Pouchard, M., J. Solid State Chem. 96, 20 (1992). http://dx.doi.org/10.1016/S0022-4596(05)80293-210.1016/S0022-4596(05)80293-2Suche in Google Scholar
© 2007 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Spectrophotometric determination of microamounts of quercetin based on its complexation with copper(II)
- Oxygen evolution on Ti/Co3O4-coated electrodes in alkaline solution
- The zeta potential of kaolin suspensions measured by electrophoresis and electroacoustics
- Fluidization behavior of oil-contaminated sand
- Software sensors for monitoring of a solid waste composting process
- Calcined Ni—Al layered double hydroxide as a catalyst for total oxidation of volatile organic compounds: Effect of precursor crystallinity
- Thermodynamic possibilities and constraints of pure hydrogen production by a chromium, nickel, and manganese-based chemical looping process at lower temperatures
- Death kinetics of Escherichia coli in goat milk and Bacillus licheniformis in cloudberry jam treated by ohmic heating
- Topochemical models for anti-HIV activity of 1-alkoxy-5-alkyl-6-(arylthio)uracils
- Acidity, lipophilicity, solubility, absorption, and polar surface area of some ACE inhibitors
- Silver as anode in cryolite—alumina-based melts
- Multicomponent facile synthesis of novel dihydroazolopyrimidinyl carbamides
- Z. Platková, M. Polakovič, V. Štefuca, M. Vandáková, and M. Antošová: Selection of Carrier for Immobilization of Fructosyltransferase from Aureobasidium pullulans
Artikel in diesem Heft
- Spectrophotometric determination of microamounts of quercetin based on its complexation with copper(II)
- Oxygen evolution on Ti/Co3O4-coated electrodes in alkaline solution
- The zeta potential of kaolin suspensions measured by electrophoresis and electroacoustics
- Fluidization behavior of oil-contaminated sand
- Software sensors for monitoring of a solid waste composting process
- Calcined Ni—Al layered double hydroxide as a catalyst for total oxidation of volatile organic compounds: Effect of precursor crystallinity
- Thermodynamic possibilities and constraints of pure hydrogen production by a chromium, nickel, and manganese-based chemical looping process at lower temperatures
- Death kinetics of Escherichia coli in goat milk and Bacillus licheniformis in cloudberry jam treated by ohmic heating
- Topochemical models for anti-HIV activity of 1-alkoxy-5-alkyl-6-(arylthio)uracils
- Acidity, lipophilicity, solubility, absorption, and polar surface area of some ACE inhibitors
- Silver as anode in cryolite—alumina-based melts
- Multicomponent facile synthesis of novel dihydroazolopyrimidinyl carbamides
- Z. Platková, M. Polakovič, V. Štefuca, M. Vandáková, and M. Antošová: Selection of Carrier for Immobilization of Fructosyltransferase from Aureobasidium pullulans