Abstract
The structure of the cell wall glucan isolated from the industrial strain of Saccharomyces cerevisiae was characterized as to be composed of a linear (1→3)-β-D-glucan chain with single β-D-glucopyranosyl residues attached to every ninth backbone unit by (1→6)-glycosidic linkages. Mild oxidation of this β-D-glucan with a dimethyl sulfoxide—acetic anhydride reagent yielded an “oxidized” glucan with aldehyde groups introduced at C-6 and carbonyl oxygens located at C-2 and C-4 of the glucopyranosyl rings. The conversion of the oxidized glucan into the polyoxime was used to study the progress of oxidation and to establish the carbonyl groups distribution in this new reactive polysaccharide derived from baker’s yeast cell wall.
[1] Kopecká, M., Phaff, H. J., and Fleet, G. H., J. Cell Biol. 62, 66 (1974). http://dx.doi.org/10.1083/jcb.62.1.6610.1083/jcb.62.1.66Suche in Google Scholar
[2] Manners, D. J., Masson, A. J., and Patterson, A. J., Biochemistry 135, 19 (1973). 10.1042/bj1350019Suche in Google Scholar
[3] Stone, B. A. and Clarke, A. E., Chemistry and Biology of (1,3)-β-Glucans. 1st Edition, p. 803. La Trobe University Press, Victoria, Australia, 1992. Suche in Google Scholar
[4] Nguyen, T. H., Fleet, G. H., and Rogers, P. L., Appl. Microbiol. Biotechnol. 50, 206 (1998). http://dx.doi.org/10.1007/s00253005127810.1007/s002530051278Suche in Google Scholar
[5] Kogan, G., in Studies in Natural Products Chemistry. Bioactive Natural Products, Part D, Vol. 23. (Atta-ur-Rahman, Editor.) Pp. 107–152. Elsevier, New York, 2000. Suche in Google Scholar
[6] Aguilar-Uscanga, B. and Francois, J. M., Lett. Appl. Microbiol. 37, 268 (2003). http://dx.doi.org/10.1046/j.1472-765X.2003.01394.x10.1046/j.1472-765X.2003.01394.xSuche in Google Scholar
[7] Klis, F. M., Mol, P., Hellingwerf, K., and Brul, S., FEMS Microbiol. Rev. 26, 239 (2002). http://dx.doi.org/10.1111/j.1574-6976.2002.tb00613.x10.1111/j.1574-6976.2002.tb00613.xSuche in Google Scholar
[8] Fleet, G. H., in The Yeasts, 2nd Edition, Vol. IV. (Rose, A. H. and Harrison, J. S., Editors.) Pp. 199–277. Academic Press, New York, 1991. Suche in Google Scholar
[9] Pfitzner, K. E. and Moffat, J. G., J. Am. Chem. Soc. 85, 3027 (1963). Suche in Google Scholar
[10] Albright, J. D. and Goldman, L., J. Am. Chem. Soc. 87, 4214 (1965). http://dx.doi.org/10.1021/ja01096a05510.1021/ja01096a055Suche in Google Scholar
[11] Sweat, F. W. and Epstein, W. W., J. Org. Chem. 32, 835 (1967). http://dx.doi.org/10.1021/jo01278a08110.1021/jo01278a081Suche in Google Scholar
[12] Hanessian, S. and Butterworth, R. F., Synthesis 2, 70 (1971). 10.1055/s-1971-21670Suche in Google Scholar
[13] Kato, K., Yoshimura, K., Yamamoto, Y., Yamauchi, R., and Sawada, Y. U., Carbohydr. Res. 197, 181 (1990). http://dx.doi.org/10.1016/0008-6215(90)84140-P10.1016/0008-6215(90)84140-PSuche in Google Scholar
[14] Sloneker, J. H., in Methods in Carbohydrate Chemistry, Vol. VI. Pp. 20–25. (Whistler, R. L. and BeMiller, J. N., Editors). Academic Press, New York, 1972. Suche in Google Scholar
[15] Hakomori, S., J. Biochem. (Tokyo) 55, 205 (1964). Suche in Google Scholar
[16] Sandford, P. A. and Conrad, H. E., Biochemistry 5, 1508 (1966). http://dx.doi.org/10.1021/bi00869a00910.1021/bi00869a009Suche in Google Scholar PubMed
[17] Bouveng, H. O. and Lindberg, B., in Methods in Carbohydrate Chemistry, Vol. V, Pp. 296–298. (Whistler, R. L. and BeMiller, J. N., Editors) Academic Press, New York, 1965. Suche in Google Scholar
[18] Jansson, P. E., Kenne, L., Liedgren, H., Lindberg, B., and Lonngren, J., Chem. Commun. Univ. Stockholm 8, 1 (1976). Suche in Google Scholar
[19] Vogel, A. I., Practical Organic Chemistry, 3rd Edition, p. 341. Wiley, New York, 1966. Suche in Google Scholar
[20] Ellington, A. C. and Purves, C. B., Can. J. Chem. 31, 801 (1953). http://dx.doi.org/10.1139/v53-10910.1139/v53-109Suche in Google Scholar
[21] Bitter, T. and Muir, H. M., Anal. Biochem. 4, 330 (1962). http://dx.doi.org/10.1016/0003-2697(62)90095-710.1016/0003-2697(62)90095-7Suche in Google Scholar
[22] Šandula, J., Kogan, G., Kačuráková, M., and Machová, E., Carbohydr. Polym. 38, 247 (1999). http://dx.doi.org/10.1016/S0144-8617(98)00099-X10.1016/S0144-8617(98)00099-XSuche in Google Scholar
[23] Schmid, F., Stone, B. A., McDougall, B. M., Bacic, A., Martin, K. L., Brownlee, R. T. C., Chai, E., and Seviour, R. J., Carbohydr. Res. 331, 163 (2001). http://dx.doi.org/10.1016/S0008-6215(01)00023-410.1016/S0008-6215(01)00023-4Suche in Google Scholar
[24] Kim, Y.-T., Kim, E.-H., Cheong, C., Williams, D. L., Kim, C.-W., and Lim, S.-T., Carbohydr. Res. 328, 331 (2000). http://dx.doi.org/10.1016/S0008-6215(00)00105-110.1016/S0008-6215(00)00105-1Suche in Google Scholar
[25] Saito, H., Ohki, T., Takasuka, N., and Sasaki, T., Carbohydr. Res. 58, 293 (1977). http://dx.doi.org/10.1016/S0008-6215(00)84356-610.1016/S0008-6215(00)84356-6Suche in Google Scholar
[26] Kogan, G., Alföldi, J., and Masler, L., Biopolymers 27, 1055 (1988). http://dx.doi.org/10.1002/bip.36027070210.1002/bip.360270702Suche in Google Scholar
[27] Bredereck, K., Tetrahedron Lett. 8, 695 (1967). http://dx.doi.org/10.1016/S0040-4039(00)90575-610.1016/S0040-4039(00)90575-6Suche in Google Scholar
© 2006 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Calibrationless determination of electroactive species using chronoamperograms at collector segment of interdigitated microelectrode array
- The β-carotene dilemma: ESR study with coordinated peroxyl radicals
- Determination of 5-hydroxymethylfurfural after Winkler and by the HPLC method for authentication of honey
- A simple linear sweep voltammetric method for the determination of double-stranded DNA with malachite green
- Spectral and electrochemical study of coordination molecules Cu4OX6L4: 3-Pyridylmethanol and 4-pyridylmethanol Cu4OBrnCl(6−n)(pm)4 complexes
- Magnetic, spectral, and thermal behaviour of 2-chloro-4-nitrobenzoates of Co(II), Ni(II), and Cu(II)
- Synthesis, characterization, and biological activities of some transition metal(II) complexes with the thiosemicarbazone derived from 4-[1-(4-methylphenylsulfonyl)-1H-indol-3-yl]but-3-en-2-one
- Crystal structure and thermal chemical properties of 2-(2,4-dimethylanilino)-3-methyl-6-diethylaminofluorane
- Etherification of glycerol with tert-butyl alcohol catalysed by ion-exchange resins
- Synthesis and reactions of 2-and 4-substituted furo[3,2-c]pyridines
- Synthetic approaches towards bisspiro[naphthalene-2(1H),3′-(3H)pyrazol]-1-one-containing compounds
- Mild Pfitzner—Moffat oxidation of the (1→3)-β-D-glucan from Saccharomyces cerevisiae
- Limited sample recovery in coupled methods of high-performance liquid chromatography of synthetic polymers
Artikel in diesem Heft
- Calibrationless determination of electroactive species using chronoamperograms at collector segment of interdigitated microelectrode array
- The β-carotene dilemma: ESR study with coordinated peroxyl radicals
- Determination of 5-hydroxymethylfurfural after Winkler and by the HPLC method for authentication of honey
- A simple linear sweep voltammetric method for the determination of double-stranded DNA with malachite green
- Spectral and electrochemical study of coordination molecules Cu4OX6L4: 3-Pyridylmethanol and 4-pyridylmethanol Cu4OBrnCl(6−n)(pm)4 complexes
- Magnetic, spectral, and thermal behaviour of 2-chloro-4-nitrobenzoates of Co(II), Ni(II), and Cu(II)
- Synthesis, characterization, and biological activities of some transition metal(II) complexes with the thiosemicarbazone derived from 4-[1-(4-methylphenylsulfonyl)-1H-indol-3-yl]but-3-en-2-one
- Crystal structure and thermal chemical properties of 2-(2,4-dimethylanilino)-3-methyl-6-diethylaminofluorane
- Etherification of glycerol with tert-butyl alcohol catalysed by ion-exchange resins
- Synthesis and reactions of 2-and 4-substituted furo[3,2-c]pyridines
- Synthetic approaches towards bisspiro[naphthalene-2(1H),3′-(3H)pyrazol]-1-one-containing compounds
- Mild Pfitzner—Moffat oxidation of the (1→3)-β-D-glucan from Saccharomyces cerevisiae
- Limited sample recovery in coupled methods of high-performance liquid chromatography of synthetic polymers