Startseite Nitrous oxide emissions from waste incineration
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nitrous oxide emissions from waste incineration

  • K. Svoboda EMAIL logo , D. Baxter und J. Martinec
Veröffentlicht/Copyright: 1. Februar 2006
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

EU energy and environmental policy in waste management leads to increasing interest in developing methods for waste disposal with minimum emissions of greenhouse gases and minimum environmental impacts.

From the point of view of nitrous oxide (N2O) emissions, waste incineration and waste co-combustion is very acceptable method of waste disposal. Two factors are important for attaining very low N2O emissions from waste incineration, particularly for waste with higher nitrogen content (e.g. sewage sludge, leather, etc.): temperature of incineration over 900°C and avoiding selective noncatalytic reduction (SNCR) de-NOx method based on urea. For reduction of N2O emissions retrofitting such plants to ammonia-based SNCR is recommendable. The modern selective catalytic reduction facilities for de-NOx at waste incineration plants are only negligible source of N2O.

[1] Kroeze, C., Nitrous oxide (N2O) emissions inventory and options for control in the Netherlands. The National Institute of Public Health and Environmental Protection Bilthoven, Report Nr. 773001004, 1994. Suche in Google Scholar

[2] Gale, J., Sankovski, A., and Crook, L., Abatement of emissions of other greenhouse gases. Nitrous Oxide. GHGT-5 Greenhouse Gas Control Technologies Conference, IEA GHG, 13–16 August 2000, Cairns, Australia. Suche in Google Scholar

[3] Olivier, J. G. J., Bouwman, A. F., Van der Hoek, K. W., and Berdowski, J. J. M., Environ. Pollut. 102,S1, 135 (1998). http://dx.doi.org/10.1016/S0269-7491(98)80026-210.1016/S0269-7491(98)80026-2Suche in Google Scholar

[4] AEAT, 1998. Options to Reduce Nitrous Oxide Emissions (Final report), AEAT-4180: Issue 3, Produced for DG XI. Suche in Google Scholar

[5] Orthofer, R., Knoflacher, H. M., and Zueger, J., Energy Conversion Manage. 37, 1309 (1996). http://dx.doi.org/10.1016/0196-8904(95)00338-X10.1016/0196-8904(95)00338-XSuche in Google Scholar

[6] Olivier, J. G. J., Bouwman, A. F., Berdowski, J. J. M., Veldt, C., Bloss, J. P. J., Visschedijk, A. J. H., van der Mass, C. W. M., and Zandveld, P. Y. J., Environ. Sci. Policy 2, 241 (1999). http://dx.doi.org/10.1016/S1462-9011(99)00027-110.1016/S1462-9011(99)00027-1Suche in Google Scholar

[7] Mosier, A. and Kroeze, C., Chemosphere — Global Change Sci. 2, 465 (2000). http://dx.doi.org/10.1016/S1465-9972(00)00039-810.1016/S1465-9972(00)00039-8Suche in Google Scholar

[8] Skiba, U. and Smith, K. A., Chemosphere — Global Change Sci. 2, 379 (2000). http://dx.doi.org/10.1016/S1465-9972(00)00016-710.1016/S1465-9972(00)00016-7Suche in Google Scholar

[9] Wojtowicz, M. A., Pels, J. R., and Moulijn, J. A., Fuel 73, 1416 (1994). http://dx.doi.org/10.1016/0016-2361(94)90056-610.1016/0016-2361(94)90056-6Suche in Google Scholar

[10] Svoboda, K., Čermák, J., and Hartman, M., Chem. Pap. 54, 118 (2000). Suche in Google Scholar

[11] Becker, K. H., Lörzer, J. C., Kurtenbach, R., Wiesen, P., Jensen, T. E., and Wallington, T. J., Chemosphere — Global Change Sci. 2, 387 (2000). http://dx.doi.org/10.1016/S1465-9972(00)00017-910.1016/S1465-9972(00)00017-9Suche in Google Scholar

[12] Bates, J., Brand, C., and Hill, N., Economic evaluation of emissions reductions in the transport sector of the EU. Bottom-up analysis, AEA Technology Environment. Contribution to a Study for DG Environment (2001). http://europa.eu.int/comm/environment/enveco/climate_change/transport_update.pdf Suche in Google Scholar

[13] Odaka, M., Koike, N., and Suzuki, H., Chemosphere — Global Change Sci. 2, 413 (2000). http://dx.doi.org/10.1016/S1465-9972(00)00042-810.1016/S1465-9972(00)00042-8Suche in Google Scholar

[14] Kramlich, J. C. and Linak, W. P., Prog. Energy Combust. Sci. 20, 149 (1994). http://dx.doi.org/10.1016/0360-1285(94)90009-410.1016/0360-1285(94)90009-4Suche in Google Scholar

[15] Werther, J., Fuel Energy Abstr. 36, 373 (1995). Suche in Google Scholar

[16] He, Y., Inamori, Y., Motoyuki, M., Kong, H., Iwami, N., and Sun, T., Sci. Total Environ. 254, 65 (2000). http://dx.doi.org/10.1016/S0048-9697(00)00439-310.1016/S0048-9697(00)00439-3Suche in Google Scholar

[17] Beck-Friis, B., Smårs, S., Jönsson, H., and Kirchmann, H., J. Agric. Eng. Res. 78, 423 (2001). http://dx.doi.org/10.1006/jaer.2000.066210.1006/jaer.2000.0662Suche in Google Scholar

[18] Lee, C. M., Lin, X. R., Lan, C. Y., Lo, S. C. L., and Chan, G. Y. S. C., J. Environ. Qual. 31, 1502 (2002). http://dx.doi.org/10.2134/jeq2002.150210.2134/jeq2002.1502Suche in Google Scholar

[19] Patumsawad, S. and Cliffe, K. R., Energy Conversion Manage. 43, 2329 (2002). http://dx.doi.org/10.1016/S0196-8904(01)00179-010.1016/S0196-8904(01)00179-0Suche in Google Scholar

[20] Ruth, L. A., Prog. Energy Combust. Sci. 24, 545 (1998). http://dx.doi.org/10.1016/S0360-1285(98)00011-210.1016/S0360-1285(98)00011-2Suche in Google Scholar

[21] Williams, P., Incineration of municipal waste with energy recovery. In Incineration of Municipal Waste. Department of Fuel and Energy, University of Leeds, 2000. Suche in Google Scholar

[22] Malkow, T., Waste Manage. 24, 53 (2004). http://dx.doi.org/10.1016/S0956-053X(03)00038-210.1016/S0956-053X(03)00038-2Suche in Google Scholar

[23] Tanikawa, N. and Mori, M., Discharge characteristics of nitrous oxide in waste incineration plants (in Japan). Tokyo-to Seiso Kenkyosho Kenkyu Hokoku, p. 157–159 (1997). Suche in Google Scholar

[24] Tanikawa, N., Toshitada, I., and Urano, K., Sci. Total Environ. 175, 189 (1995). http://dx.doi.org/10.1016/0048-9697(95)04845-610.1016/0048-9697(95)04845-6Suche in Google Scholar

[25] Johnke, B., Emissions from waste incineration: in Background papers IPPC Expert Meeting on Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (2000). http://www.ipcc-nggip.iges.or.jp/public/gp/bgp/5_3_Waste_Incineration.pdf Suche in Google Scholar

[26] Olofson, G., Wang, W., Ye, Z., Bjerle, I., and Anderson A., Energy Fuels 16, 915 (2002). http://dx.doi.org/10.1021/ef010276810.1021/ef0102768Suche in Google Scholar

[27] Svoboda, K., Hartman, M., and Veselý, V., Chem. Listy 88, 13 (1994). Suche in Google Scholar

[28] Tsujimoto, Y., Watanabe, N., and Inoue, S., Effect of reductive NOx abatement techniques on N2O emission at municipal solid waste incineration plants. Annual Report of Osaka City Institute of Public Health and Environmental Sciences 61, 22 (1999). Suche in Google Scholar

[29] Qwaak, P., Knoef, H., and Srassen, H., Energy from Biomass. A review of combustion and gasification technologies. World Bank technical paper No. 422, Energy Series, Washington D.C., 1999. 10.1596/0-8213-4335-1Suche in Google Scholar

[30] Winter, F., Wartha, C., and Hofbauer, H., Bioresource Technol. 70, 39 (1999). http://dx.doi.org/10.1016/S0960-8524(99)00019-X10.1016/S0960-8524(99)00019-XSuche in Google Scholar

[31] Nussbaumer, T., Energy Fuel 17, 1510 (2003). http://dx.doi.org/10.1021/ef030031q10.1021/ef030031qSuche in Google Scholar

[32] Moritomi, H., Shimizu, T., Suzuki, Y., Ninomiya, Y., Naruse, I., Ono, N., and Harada, M., Measurements of N2O emission from commercial scale and bench-scale coal-fired fluidized bed combustors. 15th International Conference on Fluidized Bed Combustion, Savannah, Georgia, USA, May 16–19, 1999. Suche in Google Scholar

[33] Magoarou, P., Urban waste water in Europe, what about the sludge? In Workshop on Problems around Sludge. (Langenkamp, H. and Marmo, L., Editors.) Stresa (NO) Italy, 18–19. November 1999. Suche in Google Scholar

[34] Ludwig, P. and Stamer, F., Reduction in NOx emissions from an industrial sewage incineration plant by employing primary measures in a fluidized bed furnace. 15th International Conference on Fluidized Bed Combustion, Savannah, Georgia, USA, May 16–19, 1999. Suche in Google Scholar

[35] Sänger, M., Werther, J., and Ogada, T., Fuel 80, 167 (2001). http://dx.doi.org/10.1016/S0016-2361(00)00093-410.1016/S0016-2361(00)00093-4Suche in Google Scholar

[36] Werther, J. and Ogada, T., Prog. Energy Combust. Sci. 25, 55 (1999). http://dx.doi.org/10.1016/S0360-1285(98)00020-310.1016/S0360-1285(98)00020-3Suche in Google Scholar

[37] Werther, J., Ogada, T., and Philippek, C., J. Inst. Energy 68, 93 (1995). 10.1002/cite.330680912Suche in Google Scholar

[38] Conesa, J. A., Fullana, A., and Font, R., J. Anal. Appl. Pyrolysis 70, 619 (2003). http://dx.doi.org/10.1016/S0165-2370(03)00044-510.1016/S0165-2370(03)00044-5Suche in Google Scholar

[39] Bahillo, A., Armesto, L., Cabanillas, A., and Otero, J., NOx and N2O emissions during fluidized bed combustion of leather wastes. Proceedings of the 17th International Conference on Fluidized Bed Combustion, Jacksonville, Florida, USA, May 18–21, 2003. 10.1115/FBC2003-101Suche in Google Scholar

[40] Svärd, S. H., Kullendorff, A., Virta, L., Backman, S., Tilly, H.-A., and Sterngård, E., Co-combustion of animal waste in fluidized bed boilers — Operating experiences and emissions data. 17th International Conference on Fluidized Bed Combustion, Jacksonville, Florida, USA, May 18–21, 2003. 10.1115/FBC2003-135Suche in Google Scholar

[41] Zevenhoven, R., Axelsen, E. P., Kilpinen, P., and Huppa, M., Nitrogen oxides from nitrogen-containing waste fuels at FBC conditions — Part 1. 39th IEA FBC Meeting, Madrid, Spain, 22–24 November 1999. Suche in Google Scholar

[42] Dong, Ch., Jin, B., Zhong, Z., and Lan, J., Energy Conversion Manage. 43, 2189 (2002). http://dx.doi.org/10.1016/S0196-8904(01)00157-110.1016/S0196-8904(01)00157-1Suche in Google Scholar

[43] Desroches-Ducarne, E., Marty, E., Martin, G., and Delfosse, L., Fuel 77, 1311 (1998). http://dx.doi.org/10.1016/S0016-2361(98)00049-010.1016/S0016-2361(98)00049-0Suche in Google Scholar

[44] Spliethoff, H. and Hein, K. R. G., Fuel Process. Technol. 54, 189 (1998). http://dx.doi.org/10.1016/S0378-3820(97)00069-610.1016/S0378-3820(97)00069-6Suche in Google Scholar

[45] Werther, J., Sänger, M., Hartge, E. U., Ogada, T., and Siagi, Z., Prog. Energy Combust. Sci. 26, 1 (2000). http://dx.doi.org/10.1016/S0360-1285(99)00005-210.1016/S0360-1285(99)00005-2Suche in Google Scholar

[46] Amand, L. E., Miettinen-Westberg, H., Karlsson, M., Leckner, B., Luecke, K., Budinger, S., Hartge, E. U., and Werther, J., Co-combustion of dried sewage sludge and coal/wood in CFB — a search for factors influencing emissions. 16th International Conference on Fluidized Bed Combustion, Reno, USA, May 13–16, 2001. Suche in Google Scholar

[47] Liu, D. Ch., Wang, J. H., Chen, H. P., Zhang, S. H., Huang, L., and Lu, J. D., Emission control of N2O by co-combustion of coal and biomass and narrow pulse corona discharge. 15th International Conference on Fluidized Bed Combustion, Savannah, Georgia, USA, May 16–19, 1999. Suche in Google Scholar

[48] Boavida, D., Abelha, P., Gulyurtlu, I., and Cabrita, I., Fuel 82, 1931 (2003). http://dx.doi.org/10.1016/S0016-2361(03)00151-010.1016/S0016-2361(03)00151-0Suche in Google Scholar

[49] Shen, B. X., Mi, T., Liu, D. C., Feng, B., Yao, Q., and Winter, F., Fuel Process. Technol. 84, 12 (2003). Suche in Google Scholar

[50] Hein, K. R. G. and Bemtgen, J. M., Fuel Process. Technol. 54, 159 (1998). http://dx.doi.org/10.1016/S0378-3820(97)00067-210.1016/S0378-3820(97)00067-2Suche in Google Scholar

[51] Liu, D. C., Mi, T., Shen, B. X., Feng, B., and Winter, F., Energy Fuels 16, 525 (2002). http://dx.doi.org/10.1021/ef010108f10.1021/ef010108fSuche in Google Scholar

[52] Suksankraisorn, K., Patumsawad, S., and Funtammasan, B., Waste Manage. 23, 433 (2003). http://dx.doi.org/10.1016/S0956-053X(03)00060-610.1016/S0956-053X(03)00060-6Suche in Google Scholar

[53] Svoboda, K., Pohořelý, M., and Hartman, M., Energy Fuels 17, 1091 (2003). http://dx.doi.org/10.1021/ef020224y10.1021/ef020224ySuche in Google Scholar

[54] Knöbig, T., Werther, J., Amand, L. E., and Leckner, B., Fuel 77, 1635 (1998). http://dx.doi.org/10.1016/S0016-2361(98)00092-110.1016/S0016-2361(98)00092-1Suche in Google Scholar

[55] Zhong, Z., Jin, B., Lan, J., Dong, Ch., and Zhou, H., Experimental study of municipal solid waste (MSW) incineration and its flue gas purification. 17th International Conference on Fluidized Bed Combustion, Jacksonville, Florida, USA, May 18–21, 2003. 10.1115/FBC2003-011Suche in Google Scholar

[56] Nottrodt, A., Wandschneider, J., Gutjahr, M., and Chibiorz, J., Technical Requirements and General Recommendations for the Disposal of Meat and Bone Meal and Tallow. Umweltbundesamt, UFOPLAN-Ref. No. 20033336 (2001). http://www.umweltdaten.de/down-e/meal.pdf Suche in Google Scholar

[57] Philippek, C. and Werther, J., J. Inst. Energy 70, 141 (1997). Suche in Google Scholar

[58] Tzimas, E. and Peteves, S. D., NOx and dioxin emissions from waste incineration plants. Energy technology observatory, Institute for Energy, EUR 20114 EN (2002). Suche in Google Scholar

[59] Caton, J., Narney, J. K., Cariappa, H. C., and Laster, W. R., Can. J. Chem. Eng. 73, 345 (1995). http://dx.doi.org/10.1002/cjce.545073031110.1002/cjce.5450730311Suche in Google Scholar

[60] Kasuya, F., Glarborg, P., Johnsson, J. E., and Dam-Johansen, K., Chem. Eng. Sci. 50, 1455 (1995). http://dx.doi.org/10.1016/0009-2509(95)00008-S10.1016/0009-2509(95)00008-SSuche in Google Scholar

[61] Brouwer, J., Heap, M. P., Pershing, D. W., and Smith, P. J., A model for prediction of SNCR of NOx by ammonia, urea, and cyanuric acid with mixing limitations in the presence of CO. 26th International Symposium on Combustion, Naples, Italy, July 1996. 10.1016/S0082-0784(96)80036-1Suche in Google Scholar

[62] Furrer, J., Deuber, H., Hunsinger, H., Kreisz, S., Linek, A., Seifert, H., Soehr, J., Ishikawa, R., and Watanabe, K., Waste Manage. 18, 417 (1998). http://dx.doi.org/10.1016/S0956-053X(98)00125-110.1016/S0956-053X(98)00125-1Suche in Google Scholar

[63] Koebel, M., Madia, G., and Elsener, M., Catal. Today 73, 239 (2002). http://dx.doi.org/10.1016/S0920-5861(02)00006-810.1016/S0920-5861(02)00006-8Suche in Google Scholar

[64] Koebel, M., Elsener, M., and Madia, G., Ind. Eng. Chem. Res. 40, 52 (2001). http://dx.doi.org/10.1021/ie000551y10.1021/ie000551ySuche in Google Scholar

[65] Madia, G., Koebel, M., Elsener, M., and Wokaun, A., Ind. Eng. Chem. Res. 41, 4008 (2002). http://dx.doi.org/10.1021/ie020054c10.1021/ie020054cSuche in Google Scholar

[66] Madia, G., Elsener, M., Koebel, M., Raimondi, F., and Wokaun, A., Appl. Catal., B 39, 181 (2002). http://dx.doi.org/10.1016/S0926-3373(02)00099-110.1016/S0926-3373(02)00099-1Suche in Google Scholar

[67] Suarez, S., Jung, S. M., Avila, P., Grange, P., and Blanco, J., Catal. Today 75, 331 (2002). http://dx.doi.org/10.1016/S0920-5861(02)00055-X10.1016/S0920-5861(02)00055-XSuche in Google Scholar

[68] Udron, L., Hackel, M., and Turek, T., Catalysis of reduction and oxidation reactions for application in gas particle filters. 5th International Symposium on Gas Cleaning at High Temperatures, Morgantown, USA, September 2002. Suche in Google Scholar

[69] Qi, G. and Yang, R. T., Appl. Catal., B 44, 217 (2003). http://dx.doi.org/10.1016/S0926-3373(03)00100-010.1016/S0926-3373(03)00100-0Suche in Google Scholar

[70] Qi, G. and Yang, R. T., J. Catal. 217, 434 (2003). Suche in Google Scholar

[71] Teng, H., Hsu, L. Y., and Lay, Y. Ch., Environ. Sci. Technol. 35, 2369 (2001). http://dx.doi.org/10.1021/es001674c10.1021/es001674cSuche in Google Scholar

[72] Van den Brink, R. W., Booneveld, S., Verhaak, M. J. F. M., and de Bruijn, F. A., Catal. Today 75, 227 (2002). http://dx.doi.org/10.1016/S0920-5861(02)00073-110.1016/S0920-5861(02)00073-1Suche in Google Scholar

[73] Pels, J. R. and Verhaak, J. F. M., Selective catalytic reduction of N2O with hydrocarbons using a SO2 resistant Fe/zeolite catalyst. In Non-CO2 Greenhouse Gases, Scientific Understanding, Control and Implementation. (J. van Ham et al., Editors.) P. 359–364. Kluwer Academic Publishers, Duivendrecht, The Netherlands, 2000. 10.1007/978-94-015-9343-4_57Suche in Google Scholar

[74] Schay, Z., Gucsi, L., Beck, A., and Nagy, I., Catal. Today 75, 393 (2002). http://dx.doi.org/10.1016/S0920-5861(02)00088-310.1016/S0920-5861(02)00088-3Suche in Google Scholar

[75] Stoehr, J., Bechtler, R., Furrer, J., and Seifert, H., Waste Manage. 18, 411 (1998). http://dx.doi.org/10.1016/S0956-053X(98)00144-510.1016/S0956-053X(98)00144-5Suche in Google Scholar

[76] Jones, J. and Ross, J. R. H., Catal. Today 35, 97 (1997). http://dx.doi.org/10.1016/S0920-5861(96)00148-410.1016/S0920-5861(96)00148-4Suche in Google Scholar

[77] Goemans, M., Clarysse, P., Joannes, J., De Clercq, P., Lenaerts, S., Matthys, K., and Boels, K., Chemosphere 50, 489 (2003). http://dx.doi.org/10.1016/S0045-6535(02)00554-410.1016/S0045-6535(02)00554-4Suche in Google Scholar

[78] Bonte, J. L., Fritsky, K. J., Plinke, M. A., and Wilken, M., Waste Manage. 22, 421 (2002). http://dx.doi.org/10.1016/S0956-053X(02)00025-910.1016/S0956-053X(02)00025-9Suche in Google Scholar

[79] Schaub, G., Unruh, D., Wang, J., and Turek, T., Chem. Eng. Process. 42, 365 (2003). http://dx.doi.org/10.1016/S0255-2701(02)00056-910.1016/S0255-2701(02)00056-9Suche in Google Scholar

[80] Cramer, H. and Frey, R., Umweltmagazin 1/2, 48 (2001). Suche in Google Scholar

[81] Mogami, Y., Fritsky, K. J., Bucher, R., Kurtz, E., Wilken, M., and Shono, K., Experience in Batch and Continuous Municipal Waste Incinerators in Japan. 21st International Symposium on Halogenated Environmental Organic Pollutants and POPs, Gyeongju, Korea, September 9–14, 2001. Suche in Google Scholar

[82] Cramer, H. and Frey, R., Der Von Roll 4D-Filter — Kombination von Katalysator, Filter und Trockensorption. VDI Seminar BW 43-59-11 “BAT-und preisorientierte Dioxin/Gesamtemissionsminderungstechniken”, München, Germany, 1999. Suche in Google Scholar

Published Online: 2006-2-1
Published in Print: 2006-2-1

© 2006 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Carbon dioxide production in the oscillating Belousov—Zhabotinsky reaction with oxalic acid
  2. Potentiometric and thermodynamic studies of 3-methyl-1-phenyl-{p-[N-(pyrimidin-2-yl)-sulfamoyl]phenylazo}-2-pyrazolin-5-one and its metal complexes
  3. Spectral and electrochemical study of coordination molecules Cu4OX6L4: 3-Methylpyridine and 4-Methylpyridine Cu4OBrnCl(6−n)L4 complexes
  4. Anodic stripping voltammetric determination of lead and cadmium in soil extracts
  5. Gold and silver determination in Waters by SPHERON® Thiol 1000 preconcentration and ETAAS
  6. Syntheses, geometry optimization, and electronic structure of N-and C-substituted benzonaphthyridines
  7. Synthesis, spectral description, and lipophilicity parameters determination of phenylcarbamic acid derivatives with integrated N-phenylpiperazine moiety in the structure
  8. New methods in synthesis of acetylcholinesterase reactivators and evaluation of their potency to reactivate cyclosarin-inhibited AChE
  9. Furan-containing thiacyanine analogs and their antimicrobial activity
  10. Synthesis and biological activity of new 1,3,4-thiadiazole derivatives
  11. Synthesis and identification of immunogen medroxyprogesterone acetate residues in edible foods and preparation of the Antisera
  12. Synthesis and characterization of oligosalicylaldehyde-based epoxy resins
  13. Extracellular polysaccharides produced by acapsular mutant of Cryptococcus laurentii
  14. Liquid chromatography of synthetic polymers under limiting conditions of insolubility. I. Principle of the method
  15. Transport velocities of different particulate materials in pneumatic conveying
  16. Nitrous oxide emissions from waste incineration
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-006-0016-x/html?lang=de
Button zum nach oben scrollen