

Central European Journal of Chemistry

Synthesis of dibromo ketones by the reaction of the environmentally benign H_2O_2 -HBr system with oximes

Research Article

Alexander O. Terent'ev^{1*}, Igor B. Krylov¹, Vera A. Vil'¹, Zhanna Yu. Pastukhova¹, Sergey A. Fastov², Gennady I. Nikishin¹

¹N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation

> ²JSC "Nano Technology and Innovations", 124482 Zelenograd, Russian Federation

Received 6 October 2011; Accepted 27 November 2011

Abstract: It was found that oximes undergo deoximation in the presence of the H₂O_{2aq}-HBr_{aq} system to form ketones and bromo ketones. This reaction provided the basis for the synthesis of dibromo ketones in yields varying from 40% to 94%. This method is environmentally friendly, sustainable, and easy to perform. The results of this investigation extend the potential of the use of oximes for the protection of carbonyl group, thus offering the ability to perform not only conventional deoximation but also the subsequent bromination of ketones. The reaction is easily scaled up and dibromo ketones can be prepared in gram amounts.

Keywords: Oximes • Dibromo ketones • Bromination • Hydrogen peroxide • Hydrobromic acid © Versita Sp. z o.o.

1. Introduction

Oximes belong to one of the most important classes of compounds in organic chemistry. Due to their availability and diverse reactivity, these compounds are used in the synthesis of amines, amides (lactams), nitriles, halo nitroso derivatives and halo nitro derivatives, as complex-forming agents, chelating agents, etc.

The oximation of the carbonyl group is a convenient way of protecting this group; numerous procedures for the deoximation were described in the literature [1]. All these procedures are, as a rule, limited to the formation of the starting carbonyl compounds from oximes.

In the present study, we show that oximes 1 can be used as the starting reagents for the synthesis of bromo ketones 3-5 (apparently, through the intermediate formation of ketones 2) by performing the reaction of 1 with the H_2O_{2aq} -HBr_{aq} reaction system. The latter is non-hazardous and convenient to handle and it acts as the deoximating and brominating agent with respect to oximes 1a-I. We found the conditions of the synthesis,

in which dibromo ketones **4a-I** are formed as the major reaction products (Scheme 1).

This result was quite unpredictable. We expected that the reaction would afford geminal bromo nitroso and bromo nitro products in view of the fact that, as shown earlier, the reactions of oximes with the related $\rm H_2O_2\text{-}HCl$ system performed under similar conditions (AcOH, dioxane, benzene, and dichloromethane as the solvents; 38-50°C) give geminal chloronitroso and chloronitro products with a good selectivity and in high yields (Scheme 2) [2].

It should be noted that, since in comparison with elemental halogens the H_2O_2 -HHal systems are non-hazardous, environmentally friendly, and easy to produce, their use follows modern trends in organic synthesis and these systems were widely used in the last decades [3-7]. These systems are most extensively used for halogenation of arenes [4], alkenes [5], ketones [6], and alkylarenes [7]. The diversity of halogenation and oxidation reactions associated with the generation of several active species (HHalO, H_2 HalO $^+$, Hal $_2$) in the

a: R' = Ph, R" = H; **b**: R' = 2-naphtyl, R" = H; **c**: R' = R" = 2-tetralin; **d**: R' = 4-MeC₆H₄, R" = H;

 $e: R' = 4-MeC_6H_4$, R'' = H; $f: R' = 4-HOC_6H_4$, R'' = H; $g: R' = 4-CIC_6H_4$, R'' = H;

h: R' = 4-BrC₆H₄, R" = H; i: R' = 3-BrC₆H₄, R" = H; j: R' = 3-NO₂C₆H₄, R" = H;

k: R' = $4-NO_2C_6H_4$, R'' = H; **l**: R' = tert-butyl, R" = H

Scheme 1. Transformations of oximes **1a-I** in reactions with the H₂O₂-HBr system.

Scheme 2. Chlorination of oximes with an H,O,-HCl system: facile synthesis of gem-chloronitroso- and gem-chloronitro compounds.

H₂O₂-HHal systems [8] offers the ability to control the pathway and selectivity of the reactions.

The results of this investigation extend the potential of the application of oximes for the protection of the carbonyl group, thus offering the ability to perform not only conventional deoximation but also the subsequent bromination of ketones. This approach can be useful in a multistage synthesis in which oxime fragment is introduced temporarily for the protection of carbonyl group or prepared not from the carbonyl group as well as in transformations, which are possible only in the presence of the oxime group.

2. Experimental procedure

The NMR spectra were recorded on Bruker AM-300 (300.13 MHz for ¹H and 75.48 MHz for ¹³C), Bruker WM-250 (250.13 MHz for ¹H and 62.9 MHz for ¹³C), and Bruker AC-200 (200.13 MHz for ¹H and 50.32 MHz for ¹³C) spectrometers in CDCl₃. The TLC analysis was carried out on chromatographic Silufol UV-254 plates. Column chromatography was performed with the use of 63-200 mesh silica gel (Merk).

The melting points were determined on a Kofler hot stage and are uncorrected.

Ketones and hydroxylamine hydrochloride were commercial reagents (Acros). An aqueous $36\%~H_2O_2$ solution and an aqueous 48%~HBr solution of high purity grade were used without additional purification. All oxime substrates **1a-I** used in this investigation were quantitatively synthesized by refluxing a mixture

of 1 equiv of the corresponding ketone, 2.3 equiv of hydroxylamine hydrochloride, and 2.5 equiv of sodium acetate trihydrate in aqueous methanol. Their purities were confirmed by measuring the melting points and NMR spectra.

Dioxane, AcOH, MeCN, $\mathrm{CHCl_3}$, $\mathrm{CH_2Cl_2}$, PhH, and petroleum ether (PE, 40-70) of high purity grade were used as is from commercial sources.

Synthesis of 2,2-dibromo-3,4-dihydronaphthalen-1(2*H*)-one, 4c.

3,4-Dihydro-1(2H)-naphthalenone oxime 1c (200 mg, 1.24 mmol) was dissolved in CH₂COOH (3.5 mL). Then a 36% aqueous H₂O₂ solution (469 mg, 4.96 mmol) and a 48% agueous HBr solution (2.09 g. 12.4 mmol) were successively added with cooling on a water bath to 15-20°C. The reaction mixture was refluxed for 20 min (96-106°C) and then cooled to room temperature. Water (20 mL) was added, and the reaction products were extracted with CHCl₂ (2×10 mL). The combined organic extracts were washed with water (2×20 mL), dried over Na₂SO₄, filtered, and concentrated. 2,2-Dibromo-3,4-dihydronaphthalen-1(2H)-one 4c was isolated by column chromatography on SiO2 with the use of CH₂Cl₂/PE = 1/1 as the eluent; the yield was 72% (272 mg, 0.893 mmol).

Synthesis of 2,2-dibromo-1-(2-naphthyl) ethanone, 4b.

1-(2-Naphthalenyl)-1-ethanone oxime **1b** (200 mg, 1.08 mmol) was dissolved in dioxane (3 mL). Then a 36% aqueous $\rm H_2O_2$ solution (408 mg, 4.32 mmol) and a 48% aqueous HBr solution (1.82 g, 10.8 mmol) were successively added with cooling on a water bath to

15-20°C. The reaction mixture was refluxed for 20 min (89-92°C) and then cooled to room temperature. Water (20 mL) was added, and the reaction products were extracted with CHCl $_3$ (2×10 mL). The combined organic extracts were washed with water (2×20 mL), dried over Na $_2$ SO $_4$, filtered, and concentrated. 2,2-Dibromo-1-(2-naphthyl)ethanone **4b** was isolated by column chromatography on SiO $_2$ with the use of CH $_2$ Cl $_2$ /PE = 4/3 as the eluent; the yield was 83% (294 mg, 0.896 mmol).

Synthesis of 5,7-dibromo-undecan-6-one, mixture of *meso*- and *rac*-isomers (7).

Undecan-6-one oxime **6** (200 mg, 1.08 mmol) was dissolved in dioxane (3 mL). Then a 36% aqueous $\rm H_2O_2$ solution (306 mg, 3.24 mmol) and a 48% aqueous HBr solution (1.28 g, 7.59 mmol) were successively added with cooling on a water bath to 15-20°C. The reaction mixture was refluxed for 20 min (89-92°C) and then cooled to room temperature. The isolation was carried out as described in previous experiment. The yield of 5,7-dibromo-undecan-6-one **7** was 76% (269 mg, 0.82 mmol).

4'-Bromoacetophenone (2h) [9]

¹H NMR (300.13 MHz, CDCl₃): δ = 2.54 (s, 3H, CH₃), 7.56 (d, J = 8.4 Hz, 2H, CH), 7.80 (d, J = 8.4 Hz, 2H, CH).

¹³C NMR (75.47 MHz, CDCl₃): \bar{o} = 26.5, 128.2, 129.8, 131.8, 135.8, 197.0.

2-Bromo-1-(4-bromophenyl)ethanone (3h) [10]

White crystals; mp = 106-108°C ([10] mp 107 - 110°C). ¹H NMR (300.13 MHz, CDCI₂): δ = 4.4 (s, 2H), 7.65

(m, 2H, CH), 7.86 (m, 2H, CH). ¹³C NMR (75.47 MHz, CDCl₃): δ = 30.1, 129.1, 130.2,

2,2-Dibromo-1-phenylethanone (4a) [11]

132.0, 132.3, 190.2.

White crystals; mp = 35-36°C ([11] mp 35.5-36°C).

¹H NMR (250MHz, CDCl₃): δ = 6.74 (s, 1H, CH), 7.46-7.59 (m, 2H, ArH), 7.59-7.70 (m, 1H, ArH), 8.09 (m, 2H, ArH).

2,2-Dibromo-1-(2-naphthyl)ethanone (4b) [12]

Pale yellow crystals; mp = 100-101.5°C ([12] mp 101-102°C).

 1 H NMR (250MHz, CDCl₃): δ = 6.89 (s, 1H, CH), 7.55-7.70 (m, 2H, ArH), 7.86-8.01 (m, 3H, ArH), 8.06-8.11 (m, 1H, ArH), 8.62 (s, 1H, ArH).

¹³C NMR (62.9MHz, CDCl₃): δ = 39.9, 124.7, 127.2, 127.9, 128.1, 128.9, 129.5, 129.8, 131.8, 132.2, 136.0, 186.0.

2,2-Dibromo-3,4-dihydronaphthalen-1(2H)-one (4c) [13]

White crystals; mp =57-59°C ([13] mp 59-60°C) ¹H NMR (300.13MHz, CDCl₃): δ = 2.95-3.15 (m, 4H, CH₂-CH₂), 7.22-7.29 (m, 1H, ArH), 7.30-7.40 (m, 1H, ArH), 7.49-7.57 (m, 1H, ArH) 8.09-8.16 (m, 1H, ArH).

¹³C NMR (50.32MHz, CDCl₃): δ = 29.1, 45.6, 67.4, 126.9, 127.0, 128.5, 129.8, 134.3, 141.9, 183.9.

2,2-Dibromo-1-(4-methylphenyl)ethanone (4d) [12]

Pale yellow crystals; mp = 97-98°C ([12] mp 98-99°C).

¹H NMR (250.13MHz, CDCl₃): δ = 2.43 (s, 3H, CH₃), 6.72 (s, 1H, CH), 7.30 (d, 2H, J = 7.9 Hz, ArH), 7.97 (d, 2H, J = 7.9 Hz, ArH).

2,2-Dibromo-1-(3-bromo-4-methoxyphenyl) ethanone (4e) [6b]

Slightly yellow crystals; mp = 103-104°C ([6b] 104-105°C)

¹H NMR (200.13MHz, CDCl₃): δ = 3.98 (s, 3H, CH₃), 6.63 (s, 1H, CH), 6.96 (d, 1H, J = 8.7 Hz, ArH), 8.10 (dd, 1H, J = 8.7, 2.3 Hz, ArH), 8.30 (d, 1H, J = 2.3 Hz, ArH). ¹³C NMR (50.32MHz, CDCl₃): δ = 39.5, 56.7, 111.3, 112.3, 124.2, 131.1, 135.0, 160.5, 183.7.

2,2-Dibromo-1-(3,5-dibromo-4-hydroxyphenyl) ethanone (4f) [6b]

White crystals; mp = 104.5-105°C ([6b] 104-105°C) ¹H NMR (250MHz, CDCl₃): δ = 6.54 (s, 1H, CH), 6.43-6.55 (br.s., 1H, OH), 8.24 (s, 2H, ArH).

¹³C NMR (62.9MHz, CDCl₃): δ = 38.7, 110.3, 125.3, 134.1, 154.5, 182.7.

2,2-Dibromo-1-(4-chlorophenyl)ethanone (4g)

White crystals; mp = $92.5-93.5^{\circ}$ C ([12] mp $93-94^{\circ}$ C).

 1 H NMR (200.13MHz, CDCl $_{3}$): δ = 6.62 (s, 1H, CH), 7.48 (d, 2H, J = 8.5 Hz, ArH), 8.04 (d, 2H, J = 8.5 Hz, ArH).

2,2-Dibromo-1-(4-bromophenyl)ethanone (4h) [12]

White crystals; mp = 92-93 °C ([12] mp 93-94°C). ¹H NMR (250.13MHz, CDCl₃): $\bar{\delta}$ = 6.61 (s, 1H, CH), 7.65 (d, 2H, J = 8.7Hz, ArH), 7.97 (d, 2H, J = 8.7Hz, ArH).

¹³C NMR (75.47MHz, CDCl₃): δ = 39.4, 129.7, 129.9, 131.2, 132.3, 185.1).

2,2-Dibromo-1-(3-bromophenyl)ethanone (4i) [14]

Pale yellow crystals; mp = 42.5-44°C ([14] mp 43-44°C).

¹H NMR (250MHz, CDCl₃): δ = 6.65 (s, 1H, CH), 7.37 (m, 1H, ArH), 7.75 (m, 1H, ArH), 8.01 (m, 1H, ArH), 8.20 (m, 1H, ArH).

¹³C NMR (62.9MHz, CDCl₃): δ = 39.6, 123.2, 128.2, 130.3, 132.5, 134.4, 137.3, 184.7.

2,2-Dibromo-1-(3-nitrophenyl)ethanone (4j) [12]

Pale yellow crystals; mp = 55-56 °C ([12] mp 55-56°C).

 1 H NMR (300.13 MHz, CDCl₃): δ =6.66 (s, 1H, CH), 7.76 (m, 1H, ArH), 8.42-8.55 (m, 2H, ArH), 8.94 (s, 1H, ArH).

¹³C NMR (75.47 MHz, CDCl₃): δ = 38.7, 124.8, 128.6, 130.3, 132.2, 135.4, 148.5, 148.1.

2,2-Dibromo-1-(4-nitrophenyl)ethanone (4k) [15] Pale yellow crystals; mp = 62-64°C ([15] mp 60°C).

¹H NMR (300.13 MHz, CDCl₃): δ = 6.62 (s, 1H, CH), 8.22-8.41 (m, 4H, ArH).

1,1-Dibromo-3,3-dimethylbutan-2-one (4I) [16]

¹H NMR (300.13 MHz, CDCl₃): δ = 1.29 (s, 9H, 3CH₃), 6.34 (s, 1H, CH).

¹³C NMR (75.47 MHz, CDCl₃): δ = 26.5 (CH₃), 37.0, 43.7, 201.2 (C=O)

2,2,2-Tribromo-1-(4-bromophenyl)ethanone (5h) Slightly yellow solid; mp = 104-105°C.

¹H NMR (300.13 MHz, CDCl₃): δ = 7.63 (d, 2H, CH, $J_{1,2} = 8.81$ Hz), 8.21 (d, 2H, CH, $J_{1,2} = 8.81$ Hz).

¹³C NMR (75.47 MHz, CDCl₃): $\overline{\delta}$ = 41.3, 127.1, 129.5, 131.7, 133.3, 180.7.

Anal. Calcd for $C_8H_4Br_4O$: C, 22.05; H, 0.93; Br, 73.35. Found: C, 22.15; H, 0.95; Br, 73.38.

5,7-Dibromo-undecan-6-one, mixture of *meso*-and *rac*-isomers (7) [17]

Slightly yellow oil.

¹H NMR (300.13 MHz, CDCl₃): δ = 0.92 (m, 6H, CH₃), 1.26-1.56 (m, 8H, CH₂), 1.89-2.25 (m, 4H, CH₂), 4.58 (m, 0.5H, CHBr), 4.72 (m, 1.5H, CHBr).

¹³C NMR (75.47 MHz, CDCl₃): δ = 13.9 (CH₃), 22.1, 22.3, 29.4, 29.5, 32.4, 34.5 (CH₂), 50.3, 50.7 (CHBr), 194.4, 197.9 (CO).

3. Results and discussion

The present study consists of two parts. First, we examined the influence of the reaction factors on the yields of the products **2h-5h** by an example of the model compound, *p*-bromoacetophenone oxime **1h**. Second, we performed the preparative synthesis of dibromo ketones **4a-I** from oximes **1a-I** taking into account the optimized conditions.

In the first part of the study, the reaction of p-bromoacetophenone oxime $\mathbf{1h}$ with H_2O_{2aq} - HBr_{aq} system was performed in single- and two-phase systems with the use of the following solvents: acetic acid, dioxane, acetonitrile, chloroform, and benzene. A 36% aqueous H_2O_2 solution was added to a suspension or solution of oxime $\mathbf{1h}$ followed by the addition of a 48% aqueous HBr solution with stirring and cooling. Then the reaction mixture was heated to the boiling point and refluxed during a preset period of time. Depending

on the reaction conditions, acetophenone **2h** and consecutively brominated monobromoacetophenone **3h**, dibromoacetophenone **4h**, and tribromoacetophenone **5h** were prepared (Table 1).

The influence of the following three parameters on the yield of products $\bf 2h\text{-}5h$ was examined: the nature of the solvent and the amounts of $\rm H_2O_2$ and HBr.

In runs 1-9, where acetic acid was used as the solvent, the amounts of H_2O_2 and HBr were optimized with the aim of achieving selective deoximation and preparing one of bromoacetophenones. It was shown that the reaction affords mono- (**3h**) and dibromoacetophenone **4h** as the major reaction products as the amount of H_2O_2 increases from 0.5 to 2.5 mol per mole of **1h** in the presence of an excess of HBr varying from 3 to 10 mol per mole of **1h** (runs 1-7). In runs 6 and 7, dibromoacetophenone **4h** was prepared with selectivity, allowing the use of this procedure for synthetic purposes. A comparison of the results of runs 5-7 showed that an excess of HBr suppresses the bromination reaction to a certain extent. This is consistent with the data on the reversibility of the bromination of ketones [18].

In run 8 (in the absence of HBr), acetophenone **2h** was obtained in good yield (80%); the H_2O_2 – AcOH system acts as the deoximating agent.

An unexpected result was obtained in run 9, where $\rm H_2O_2$ was not used as the oxidizing agent; instead, air was bubbled through the reaction mixture and, as a result, monobromoacetophenone **3h** was synthesized as the major product (yield 66%). It is known that HBr is not oxidized by atmospheric oxygen; however, arenes, alkenes, and ketones can be brominated by the HBr/NaNO₂/air system.[3a,19] Presumably, in the case under consideration HBr is oxidized by nitrogen oxides that are formed in the course of deoximation of oxime.

The use of dioxane as the solvent (runs 10-12) allowed us to prepare monobromoacetophenone **3h** (run 11) and dibromoacetophenone **4h** (run 12) in satisfactory yields.

In the case of acetonitrile (runs 13 and 14), we failed to selectively synthesize products **2h-4h**. The synthesis in the two-phase system consisting of chloroform or benzene (runs 15-17) also holds little promise for the selective preparation of bromo ketones even with the use of the acid catalyst TsOH (run 16).

Taking into account the reaction conditions optimized for the preparation of dibromoacetophenone **4h**, we synthesized dibromo ketones **4a-I** from oximes **1a-I** (Table 2).

The above-described method for the synthesis of dibromo ketones from oximes proved to be quite general and gives products in preparative yields.

Table 1. Influence of the reaction conditions on the results of the reaction of oxime 1h with the H,O_{2m}-HBr_{an} system^a.

Run	Mol H ₂ O ₂ / mol	Mol HBr/ mol	Solvent	Reaction time	Yield, %			
	1h	1h		(min)	2 h	3h	4h	5h
1	0.5	5	AcOH	20	32	62	3	-
2	1.5	3	AcOH	20	27	67	3	-
3	1.5	5	AcOH	20	13	73	9	-
4	2	5	AcOH	40	2.3	62	31	-
5	2.5	4	AcOH	90	-	-	68	16
6	2.5	5	AcOH	20	-	-	87	9
7	2.5	10	AcOH	20	-	16	77	-
8	2.5	0	AcOH	20	80	-	-	-
9 ь	0	5	AcOH	120	24	66	4	-
10	1.5	3	dioxane	20	49	46	-	-
11	2	4	dioxane	20	11	73	5	-
12	2.5	5	dioxane	30	-	18	69	-
13	1.5	3	MeCN	20	50	47	-	-
14	2.5	5	MeCN	60	-	46	53	1
15	2.5	5	CHCI ₃	210	71	13	2	-
16	2.5°	5	CHCI ₃	210	11	59	18	-
17	2.5	5	PhH	60	3	65	26	2

^a General procedure: a 36% aqueous H_2O_2 solution (44-221 mg, 0.47-2.34 mmol) (except run 9) and a 48% aqueous HBr solution (0.47-1.57g, 2.8-9.34 mmol) (except run 8) were added with stirring and water-bath cooling (15-20°C) to a solution of p-bromoacetophenone oxime 1h (200 mg, 0.934 mmol) in the solvent (2 mL), and the reaction mixture was refluxed.

$$\begin{array}{c} C_4H_9 \\ \hline NOH \\ \hline C_4H_9 \\ \hline C_4H_9 \\ \hline 6 \\ \end{array} \begin{array}{c} Br \\ \hline C_4H_9 \\ \hline C_4H_9 \\ \hline \end{array}$$

Scheme 3. Bromination of oxime 6 in the reaction with the H₂O₂-HBr system.

Dibromoacetophenones **4a-d** containing no functional groups were synthesized in good yield (66-83%) in runs 1-4. The bromination of methoxy- **(1e)** and hydroxyacetophenone **(1f)** oximes (runs 5 and 6, respectively) resulted in the bromination not only of the side chain but also of the aryl ring. Noteworthy is the high yield of product **4e** (94%), whose synthesis involves the following three reactions: deoximation, bromination of the side chain, and bromination of the ring, each reaction occurring in quantitative yield. The introduction of electron-withdrawing substituents, such as chlorine

and bromine, into the ring (oximes **1g-i**, runs 7-9) does not interfere with the synthesis of dibromo ketones **4g-i** in good yields. The presence of the strong electron-withdrawing nitro group in the nucleus of acetophenone oxime (runs 10-11) leads to a decrease in the yield of target dibromoacetophenones **4j** (59%) and **4k** (44%). Aliphatic ketone oxime **1l** is selectively transformed into dibrominated product **4l** (87% yield).

It is interesting to note that in the reaction of undecan-6-one containing two methylene groups in the α - and α -positions relatively to the carbonyl group with H_2O_2 -HBr system bromination occurs of both these positions. α -, α -Dibromoketone $\boldsymbol{7}$ is prepared in 76% yield, formation of α,α -dibromoketone is not observed (Scheme 3).

4. Conclusions

To sum up, we developed an easy-to-perform, environmentally friendly and facile method for the synthesis of dibromo ketones in yields varying from 40

^b The total volume of acetic acid was 4 mL; air was bubbled through the reaction mixture.

[°] TsOH (53.3 mg, 0.28 mmol, 0.3mol / mol 1h) was added to the reaction mixture.

 Table 2. Synthesis of dibromo ketones 4a-I by the reaction of oximes 1a-I with the H_2O_{2aq} - HBr_{aq} system^a.

Run	Oxime 1	Mol H ₂ O ₂ / mol 1	Mol HBr / mol 1	Dibromo ketone 4, yield %
1	NOH 1a	3	6	Br 4a, 66 (68) ⁶
2°	OH NOH	4	10	9 Br 4b, 83
3	OH 1c	4	10	O Br Br 4c, 72
4	NOH 1d	3	6	Br 4d, 74
5	NOH 1e	4.5	10	Br Br Br 4e, 94
6	HO 1f	4.5	10	Br HO Br 4f, 40
7	CI 1g	3	6	Cl Br Br 4g, 75 (73)°
8	Br 1h	2.5	5	Br Br 4h, 84

Continued Table 2. Synthesis of dibromo ketones 4a-I by the reaction of oximes 1a-I with the H₂O_{2aq} -HBr_{aq} system^a.

Run	Oxime 1	Mol H ₂ O ₂ / mol 1	Mol HBr / mol 1	Dibromo ketone 4, yield %
9	Br NOH	3	8	Br Br 4i, 75
10	O ₂ N NOH	4.5	11	O ₂ N Br Br 4j, 59
11	NOH O ₂ N	5	10	O ₂ N Br Br 4k, 44
12	NOH	4	8	Br 41, 87

^a General procedure: a 36% aqueous H₂O₂ solution (2.34-6.95 mmol; 2.5-5 mol H₂O₂ per mole of 1a-I) and a 48% aqueous HBr solution (4.67-13.9 mmol; 6-11 mol HBr per mole of 1a-I) were added with stirring and water-bath cooling (15-20°C) to a solution of oxime 1a-I (200 mg, 0.934-1.74 mmol) in AcOH (2-4mL), and the reaction mixture was refluxed (89-106°C) for 20 min.

to 94% based on the reactions of oximes with the $\rm H_2O_{2aq}$ -HBr_{aq} system. The results of the present study extend the potential of the use of oximes for the protection of the carbonyl group, which offers the ability to perform not only conventional deoximation but also the subsequent *in situ* bromination of the resulting ketones. The process can be scaled up and dibromo ketones can be prepared in gram amounts.

References

[1] (a) C. Isart, D. Bastid, J. Burés, J. Vilarrasa, Angew. Chem. 123, 3333 (2011); (b) M. Hakimi, N. Feizi, H. Vahedi, H. Hassani, P.S. Thomas, Synth. Commun. 40, 725 (2010); (c) K. Muthu, K.Selvam,B.Krishnakumar,M.Swaminathan,Applied Cat. A: 358, 259 (2009); (d) X.-T. Zhou, Q.-L. Yuan, H.-B. Ji, Tetrahedron Lett. 51, 613 (2010); (e) E. Abele, R. Abele, L. Golomba, J. Višņevska, T. Beresneva, K. Rubina, E. Lukevics, Chem.

Acknowledgments

This work is supported by the Program for Support of Leading Scientific Schools of the Russian Federation (Grant NSh 4659.2012.3), the Grant of the Russian Foundation for Basic Research (Grant 11-03-00857-a), and the Ministry of education and science of the Russian Federation (Grant 16.513.11.3108).

- Heterocyclic Compounds 46, 905 (2010); (f) N.C. Ganguly, S. Nayek, S.K. Barik, Synth. Commun. 39, 4053 (2009); (g) N. Jain, A. Kumar, S.M.S. Chauhan, Tetrahedron Lett. 46, 2599 (2005); (h) S.P. Chavan, P. Soni, Tetrahedron Lett. 45, 3161 (2004); (i) A. Dewan, D.K. Kakati, Asian J. Chem. 22, 2825 (2010)
- [2] A.O. Terent'ev, I.B. Krylov, Y.N. Ogibin, G.I. Nikishin, Synthesis, 3819 (2006)

The synthesis was scaled up by a factor of 10.

[°] Dioxane as the solvent.

- [3] (a) A. Podgoršek, M. Zupan, J. Iskra, Angew. Chem. Int. Ed. 48, 8424 (2009); (b) M. Eissen, D. Lenoir, Chem. A Europ. J. 14, 9830 (2008)
- [4] (a) N.B. Barhate, A.S. Gajare, R.D. Wakharkar, A.V. Bedekar, Tetrahedron 55, 11127 (1999); (b) N.B. Barhate, A.S. Gajare, R.D. Wakharkar, A.V. Bedekar, Tetrahedron Lett. 39, 6349 (1998); (c) U. Bora, G. Bose, M.K. Chaudhuri, S.S. Dhar, R. Gopinath, A.T. Khan, B.K. Patel, Org. Lett. 2, 247 (2000); (d) N.I. Rudakova, O.V. Anufrieva, E.A. Smirnova, J. Gen. Chem. USSR (Engl. Transl.) 62, 1887 (1992); Zh. Obshch. Khim. 62, 2290 (1992) (In Russian); (e) N.I. Rudakova, Yu.G. Erykalov, S.M. Zharikova, E.V. Dmitrieva, M.S. Mataradze, Russ. J. Gen. Chem. 65, 271 (1995); Zh. Obshch. Khim. 65, 315 (1995); (f) J. Dakka, Y. Sasson, Chem. Soc. Chem. Commun. (1987); (g) B.S. Bhatkhande, M.V. Adhikari, S.D. Samant, Ultrasonics Sonochemistry 9, 31 (2002);(h) P.V. Vyas, A.K. Bhatt, Ramachandraiah, A.V. Bedekar, Tetrahedron Lett. 44, 4085 (2003); (i) P. Bezodis, J.R. Hanson, P. Petit, J. Chem.Res.Synop. 7, 334 (1996); (j) A.M. Andrievskii, M.V. Gorelik, S.V. Avidon, E.Sh. Al'tman, Russ. J. Org. Chem. 29, 1519 (1993); Zh. Org. Khim. 29, 1828 (1993) Russian); (In (k) S. Mukhopadhyay, S. Ananthakrishnan, S.B. Chandalia, Org. Process Res. Dev. 3, 10 (1999); 3, 196 (1999); 3, 451 (1999)
- [5] (a) V.S. Arutyunyan, T.V. Kochikyan,
 N.S. Egiazaryan, A.A. Avetisyan, Russ. J. Org.
 Chem. 31, 90 (1995); Zh.Org.Khim. 31, 100 (1995)
 (In Russian); (b) T. Moriuchia, M. Yamaguchia,
 K. Kikushimaa, T. Hirao, Tetrahedron Lett. 48, 2667 (2007)
- [6] (a) A.O. Terent'ev, S.V. Khodykin, N.A. Troitskii, Yu.N. Ogibin, G.I. Nikishin, Synthesis 2845 (2004); (b) A.O. Terent'ev, S.V. Khodykin, I.B. Krylov, Yu.N. Ogibin, G.I. Nikishin, Synthesis 1087 (2006); (c) V.H. Tillu, P.D. Shinde, A.V. Bedekar, R.D. Wakharkar, Synth. Commun. 33, 1399 (2003); (d) A. Podgoršek, S. Stavber, M. Zupan, J. Iskra, Green Chem. 9, 1212 (2007); (e) A. Podgoršek, S. Stavber, M. Zupan, J. Iskra, Tetrahedron 65, 4429 (2009)

- [7] A. Amati, G. Dosualdo, L.H. Zhao, A. Bravo, F. Fontana, F. Minisci, H.R. Bjorsvik, Org. Process Res. Dev. 2, 261 (1998)
- [8] (a) J.H. Espenson, Z. Zhu, T.H. Zauche, J. Org. Chem. 64, 1191 (1999); (b) V.B. Sharma, S.L. Jain, B. Sain, Synlett 173 (2005); (c) R. Taylor, Electrophilic Aromatic Substitution (John Wiley & Sons, New York, 1990)
- [9] B.R. Kim, H.-G. Lee, E.J. Kim, S.-G. Lee, Y.-J. Yoon, J. Org. Chem. 75, 484 (2010)
- [10] A.R. Hajipour, A.E. Ruoho, S. Safaei, Synthetic Commun. 39, 3687 (2009)
- [11] V.F. Traven, B.I. Stepanov, J. Org. Chem. USSR (English Translation) 5, 1756 (1969); Zh. Org. Khim 5, 1809 (1969) (In Russian)
- [12] V.P. Krawez, G.I. Chervenyuk, G.V. Grinev, J.Org. Chem.USSR (Engl.Transl.) 2, 1238 (1966); Zh.Org. Khim. 2, 1244 (1966) (In Russian)
- [13] K.G. Rutherford, C.L. Stevens, J. Am. Chem. Soc. 77, 3278 (1955)
- [14] S. Paul, V. Gupta, R. Gupta, A. Loupy, Tetrahedron Lett. 44, 439 (2003)
- [15] K. Kim, J. Cho, S.C. Yoon, J. Chem. Soc. Perkin Trans.1, 253 (1995)
- [16] J.-M. Poirier, Bull. Soc. Chim. Fr. 2, 17 (1982)
- [17] (a) S. Koenig, I. Ugi, H. Schramm, J.Arch. Pharm. (Weinheim, Germany) 328, 699 (1995);
 (b) R. Breslow, L.J. Altman, A. Krebs, E. Mohacsi, I. Murata, R.A. Peterson, J. Posner, J. Am. Chem. Soc. 87, 1326 (1965)
- [18] (a) A.W. Erian, S.M. Sherif, H.M. Gaber, Molecules 8, 793 (2003); (b) A.L. Wilds, C. Djerassi, J. Am. Chem. Soc. 68, 2125 (1946); (c) E.R. Blout, V.W. Eager, D.C. Silverman, J. Am. Chem. Soc. 68, 566 (1946)
- [19] A. Podgoršek, M. Eissen, J. Fleckenstein, S. Stavber, M. Zupan, J. Iskra, Green Chem. 11, 120 (2009)