Design of Dynamics of a Recuperative Catalytic Combustor: Enhancement in Operation and Control
-
Wojciech M. Budzianowski
und Ryszard Miller
The current contribution is aimed to describe and design the dynamics of the recuperative catalytic combustor. The step responses of the combustible concentration, fuel flow rate, fuel temperature and three manipulated variables are determined for the non-controlled combustor. The time delays, time constants and gains are determined for the temperatures measured in two points in the catalytic zone and its dependencies on the process and geometrical parameters are discussed. The frequency response analysis conducted shows that in the combustor with a higher time constant medium term input disturbances are effectively attenuated. In order to handle long term impulses of lean or rich fuels, the control strategy dedicated to the current combustor is proposed. It is verified in the example in which the frequently used control algorithm is applied to simulate the process control. The results show that the improvement is attained in combustor transient operation and control.
©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
Artikel in diesem Heft
- Article
- Process Modeling & Control: A Special Issue of Chemical Product & Process Modeling
- Determination of Kinetic and Stoichiometric Parameters of Pseudomonas putida F1 by Chemostat and In Situ Pulse Respirometry
- Exponential Observer Design for State Estimation in a Class of Anaerobic Sulfate Reducing Bioreactor
- From Reacting to Predicting Technologies: A Novel Performance Monitoring Technique Based on Detailed Dynamic Models
- Nonlinear Analysis of Heterogeneous Model for an Industrial Ammonia Reactor
- Iterative Design of Dynamic Experiments in Modeling for Optimization of Innovative Bioprocesses
- Dynamic Process and Accident Simulations as Tools to Prevent Industrial Accidents
- Modeling Disturbance Dynamics to Improve Controller Performance in Industrial Loops
- On the Design of an In-Line Control System for a Vial Freeze-Drying Process: The Role of Chamber Pressure
- A Takagi-Sugeno Fuzzy Dynamic Model of a Concentric-Tubes Heat Exchanger
- Design of Dynamics of a Recuperative Catalytic Combustor: Enhancement in Operation and Control
- Formulation and Spectral Reduction of the Dynamical Model of a Circulating Fluidized Bed Combustor
Artikel in diesem Heft
- Article
- Process Modeling & Control: A Special Issue of Chemical Product & Process Modeling
- Determination of Kinetic and Stoichiometric Parameters of Pseudomonas putida F1 by Chemostat and In Situ Pulse Respirometry
- Exponential Observer Design for State Estimation in a Class of Anaerobic Sulfate Reducing Bioreactor
- From Reacting to Predicting Technologies: A Novel Performance Monitoring Technique Based on Detailed Dynamic Models
- Nonlinear Analysis of Heterogeneous Model for an Industrial Ammonia Reactor
- Iterative Design of Dynamic Experiments in Modeling for Optimization of Innovative Bioprocesses
- Dynamic Process and Accident Simulations as Tools to Prevent Industrial Accidents
- Modeling Disturbance Dynamics to Improve Controller Performance in Industrial Loops
- On the Design of an In-Line Control System for a Vial Freeze-Drying Process: The Role of Chamber Pressure
- A Takagi-Sugeno Fuzzy Dynamic Model of a Concentric-Tubes Heat Exchanger
- Design of Dynamics of a Recuperative Catalytic Combustor: Enhancement in Operation and Control
- Formulation and Spectral Reduction of the Dynamical Model of a Circulating Fluidized Bed Combustor