Startseite Detecting Nonlinearity in Time Series: Surrogate and Bootstrap Approaches
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Detecting Nonlinearity in Time Series: Surrogate and Bootstrap Approaches

  • Melvin J Hinich , Eduardo M Mendes und Lewi Stone
Veröffentlicht/Copyright: 8. Dezember 2005
Veröffentlichen auch Sie bei De Gruyter Brill

Detecting nonlinearity in financial time series is a key point when the main interest is to understand the generating process. One of the main tests for testing linearity in time series is the Hinich Bispectrum Nonlinearity Test (HINBIN). Although this test has been succesfully applied to a vast number of time series, further improvement in the size power of the test is possible. A new method that combines the bispectrum and the surrogate method and bootstrap is then presented for detecting nonlinearity, gaussianity and time reversibility. Simulated and real data examples are given to demonstrate the efficacy of the new tests.

Published Online: 2005-12-8

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston

Heruntergeladen am 21.11.2025 von https://www.degruyterbrill.com/document/doi/10.2202/1558-3708.1268/pdf
Button zum nach oben scrollen