Startseite A Kernel Test for Neglected Nonlinearity
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Kernel Test for Neglected Nonlinearity

  • Ralph Bradley und Robert McClelland
Veröffentlicht/Copyright: 1. Juli 1996
Veröffentlichen auch Sie bei De Gruyter Brill

This paper develops a new kernel test for neglected nonlinearity in the conditional expectation function, and compares this test to the Ramsey RESET test (1969) and the Neural Net test of Lee, White, and Granger (1993). Like the Neural Test and the Ramsey Reset Test, this Kernel test is a Lagrange Multiplier test based on the R-Square statistic from a regression of the estimated residuals on the regressors, and an additional nonlinear function of the regressors. Unlike the other tests, our test has a two stage approach where in the first stage we estimate the structure of the misspecification and in the second stage we test for whether or not the estimate of the misspecification can better predict the residuals than their mean. This two stage approach can give the researcher guidance on the nature of the misspecification, and should improve the power of the test since the added function in the regression of the residuals is itself an estimate of the conditional expectation of the residuals given the independent variables. In addition, because it uses simple, well known estimation methods it can be implemented by researchers when using linear models.

Published Online: 1996-7-1

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston

Heruntergeladen am 21.11.2025 von https://www.degruyterbrill.com/document/doi/10.2202/1558-3708.1016/pdf
Button zum nach oben scrollen