A Context Dependent Pair Hidden Markov Model for Statistical Alignment
-
Ana Arribas-Gil
This article proposes a novel approach to statistical alignment of nucleotide sequences by introducing a context dependent structure on the substitution process in the underlying evolutionary model. We propose to estimate alignments and context dependent mutation rates relying on the observation of two homologous sequences. The procedure is based on a generalized pair-hidden Markov structure, where conditional on the alignment path, the nucleotide sequences follow a Markov distribution. We use a stochastic approximation expectation maximization (saem) algorithm to give accurate estimators of parameters and alignments. We provide results both on simulated data and vertebrate genomes, which are known to have a high mutation rate from CG dinucleotide. In particular, we establish that the method improves the accuracy of the alignment of a human pseudogene and its functional gene.
©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
Articles in the same Issue
- Article
- The Inheritance Procedure: Multiple Testing of Tree-structured Hypotheses
- Optimality Criteria for the Design of 2-Color Microarray Studies
- Stopping-Time Resampling and Population Genetic Inference under Coalescent Models
- A Mixture-Model Approach for Parallel Testing for Unequal Variances
- Fast Identification of Biological Pathways Associated with a Quantitative Trait Using Group Lasso with Overlaps
- MicroRNA Transcription Start Site Prediction with Multi-objective Feature Selection
- A Context Dependent Pair Hidden Markov Model for Statistical Alignment
- Fast Wavelet Based Functional Models for Transcriptome Analysis with Tiling Arrays
- Alignment-free Sequence Comparison for Biologically Realistic Sequences of Moderate Length
- Transcriptional Network Inference from Functional Similarity and Expression Data: A Global Supervised Approach
- Improving Hidden Markov Models for Classification of Human Immunodeficiency Virus-1 Subtypes through Linear Classifier Learning
Articles in the same Issue
- Article
- The Inheritance Procedure: Multiple Testing of Tree-structured Hypotheses
- Optimality Criteria for the Design of 2-Color Microarray Studies
- Stopping-Time Resampling and Population Genetic Inference under Coalescent Models
- A Mixture-Model Approach for Parallel Testing for Unequal Variances
- Fast Identification of Biological Pathways Associated with a Quantitative Trait Using Group Lasso with Overlaps
- MicroRNA Transcription Start Site Prediction with Multi-objective Feature Selection
- A Context Dependent Pair Hidden Markov Model for Statistical Alignment
- Fast Wavelet Based Functional Models for Transcriptome Analysis with Tiling Arrays
- Alignment-free Sequence Comparison for Biologically Realistic Sequences of Moderate Length
- Transcriptional Network Inference from Functional Similarity and Expression Data: A Global Supervised Approach
- Improving Hidden Markov Models for Classification of Human Immunodeficiency Virus-1 Subtypes through Linear Classifier Learning