The Inheritance Procedure: Multiple Testing of Tree-structured Hypotheses
-
Jelle J. Goeman
Hypotheses tests in bioinformatics can often be set in a tree structure in a very natural way, e.g. when tests are performed at probe, gene, and chromosome level. Exploiting this graph structure in a multiple testing procedure may result in a gain in power or increased interpretability of the results.We present the inheritance procedure, a method of familywise error control for hypotheses structured in a tree. The method starts testing at the top of the tree, following up on those branches in which it finds significant results, and following up on leaf nodes in the neighborhood of those leaves. The method is a uniform improvement over a recently proposed method by Meinshausen. The inheritance procedure has been implemented in the globaltest package which is available on www.bioconductor.org.
©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
Articles in the same Issue
- Article
- The Inheritance Procedure: Multiple Testing of Tree-structured Hypotheses
- Optimality Criteria for the Design of 2-Color Microarray Studies
- Stopping-Time Resampling and Population Genetic Inference under Coalescent Models
- A Mixture-Model Approach for Parallel Testing for Unequal Variances
- Fast Identification of Biological Pathways Associated with a Quantitative Trait Using Group Lasso with Overlaps
- MicroRNA Transcription Start Site Prediction with Multi-objective Feature Selection
- A Context Dependent Pair Hidden Markov Model for Statistical Alignment
- Fast Wavelet Based Functional Models for Transcriptome Analysis with Tiling Arrays
- Alignment-free Sequence Comparison for Biologically Realistic Sequences of Moderate Length
- Transcriptional Network Inference from Functional Similarity and Expression Data: A Global Supervised Approach
- Improving Hidden Markov Models for Classification of Human Immunodeficiency Virus-1 Subtypes through Linear Classifier Learning
Articles in the same Issue
- Article
- The Inheritance Procedure: Multiple Testing of Tree-structured Hypotheses
- Optimality Criteria for the Design of 2-Color Microarray Studies
- Stopping-Time Resampling and Population Genetic Inference under Coalescent Models
- A Mixture-Model Approach for Parallel Testing for Unequal Variances
- Fast Identification of Biological Pathways Associated with a Quantitative Trait Using Group Lasso with Overlaps
- MicroRNA Transcription Start Site Prediction with Multi-objective Feature Selection
- A Context Dependent Pair Hidden Markov Model for Statistical Alignment
- Fast Wavelet Based Functional Models for Transcriptome Analysis with Tiling Arrays
- Alignment-free Sequence Comparison for Biologically Realistic Sequences of Moderate Length
- Transcriptional Network Inference from Functional Similarity and Expression Data: A Global Supervised Approach
- Improving Hidden Markov Models for Classification of Human Immunodeficiency Virus-1 Subtypes through Linear Classifier Learning