Home Testing for Trends in Dose-Response Microarray Experiments: A Comparison of Several Testing Procedures, Multiplicity and Resampling-Based Inference
Article
Licensed
Unlicensed Requires Authentication

Testing for Trends in Dose-Response Microarray Experiments: A Comparison of Several Testing Procedures, Multiplicity and Resampling-Based Inference

  • Dan Lin , Ziv Shkedy , Dani Yekutieli , Tomasz Burzykowski , Hinrich W.H. Göhlmann , An De Bondt , Tim Perera , Tamara Geerts and Luc Bijnens
Published/Copyright: October 11, 2007

Dose-response studies are commonly used in experiments in pharmaceutical research in order to investigate the dependence of the response on dose, i.e., a trend of the response level toxicity with respect to dose. In this paper we focus on dose-response experiments within a microarray setting in which several microarrays are available for a sequence of increasing dose levels. A gene is called differentially expressed if there is a monotonic trend (with respect to dose) in the gene expression. We review several testing procedures which can be used in order to test equality among the gene expression means against ordered alternatives with respect to dose, namely Williams' (Williams 1971 and 1972), Marcus' (Marcus 1976), global likelihood ratio test (Bartholomew 1961, Barlow et al. 1972, and Robertson et al. 1988), and M (Hu et al. 2005) statistics. Additionally we introduce a modification to the standard error of the M statistic. We compare the performance of these five test statistics. Moreover, we discuss the issue of one-sided versus two-sided testing procedures. False Discovery Rate (Benjamni and Hochberg 1995, Ge et al. 2003), and resampling-based Familywise Error Rate (Westfall and Young 1993) are used to handle the multiple testing issue. The methods above are applied to a data set with 4 doses (3 arrays per dose) and 16,998 genes. Results on the number of significant genes from each statistic are discussed. A simulation study is conducted to investigate the power of each statistic. A R library IsoGene implementing the methods is available from the first author.

Published Online: 2007-10-11

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston

Articles in the same Issue

  1. Article
  2. Accounting for Dependence in Similarity Data from DNA Fingerprinting
  3. Normalization of Dye Bias in Microarray Data Using the Mixture of Splines Model
  4. A Generalized Sidak-Holm Procedure and Control of Generalized Error Rates under Independence
  5. Using Duplicate Genotyped Data in Genetic Analyses: Testing Association and Estimating Error Rates
  6. Likelihood-Based Inference for Multi-Color Optical Mapping
  7. Sparse Logistic Regression with Lp Penalty for Biomarker Identification
  8. Super Learning: An Application to the Prediction of HIV-1 Drug Resistance
  9. Supervised Detection of Conserved Motifs in DNA Sequences with Cosmo
  10. Accurate Ranking of Differentially Expressed Genes by a Distribution-Free Shrinkage Approach
  11. Statistical Inference for Quantitative Polymerase Chain Reaction Using a Hidden Markov Model: A Bayesian Approach
  12. A Bayesian Model of AFLP Marker Evolution and Phylogenetic Inference
  13. Sequential Quantitative Trait Locus Mapping in Experimental Crosses
  14. Case-Control Inference of Interaction between Genetic and Nongenetic Risk Factors under Assumptions on Their Distribution
  15. Inference on the Limiting False Discovery Rate and the P-value Threshold Parameter Assuming Weak Dependence between Gene Expression Levels within Subject
  16. Reconstructing Gene Regulatory Networks with Bayesian Networks by Combining Expression Data with Multiple Sources of Prior Knowledge
  17. Cox Survival Analysis of Microarray Gene Expression Data Using Correlation Principal Component Regression
  18. A Method for Meta-Analysis of Case-Control Genetic Association Studies Using Logistic Regression
  19. Approximating the Variance of the Conditional Probability of the State of a Hidden Markov Model
  20. Using Linear Mixed Models for Normalization of cDNA Microarrays
  21. Experimental Design for Two-Color Microarrays Applied in a Pre-Existing Split-Plot Experiment
  22. The Cyclohedron Test for Finding Periodic Genes in Time Course Expression Studies
  23. H-Tuple Approach to Evaluate Statistical Significance of Biological Sequence Comparison with Gaps
  24. Multiple Testing Issues in Discriminating Compound-Related Peaks and Chromatograms from High Frequency Noise, Spikes and Solvent-Based Noise in LC - MS Data Sets
  25. A Bayesian Approach to Estimation and Testing in Time-course Microarray Experiments
  26. Super Learner
  27. Testing for Trends in Dose-Response Microarray Experiments: A Comparison of Several Testing Procedures, Multiplicity and Resampling-Based Inference
  28. On the Operational Characteristics of the Benjamini and Hochberg False Discovery Rate Procedure
  29. A Comparison of Methods to Control Type I Errors in Microarray Studies
  30. Selection of Biologically Relevant Genes with a Wrapper Stochastic Algorithm
  31. T-BAPS: A Bayesian Statistical Tool for Comparison of Microbial Communities Using Terminal-restriction Fragment Length Polymorphism (T-RFLP) Data
  32. Population Structure and Covariate Analysis Based on Pairwise Microsatellite Allele Matching Frequencies
  33. Estimating the Arm-Wise False Discovery Rate in Array Comparative Genomic Hybridization Experiments
  34. An Expectation Maximization Approach to Estimate Malaria Haplotype Frequencies in Multiply Infected Children
  35. Estimation of Expression Levels in Spotted Microarrays with Saturated Pixels
  36. Improving Divergence Time Estimation in Phylogenetics: More Taxa vs. Longer Sequences
  37. Fully Bayesian Mixture Model for Differential Gene Expression: Simulations and Model Checks
  38. Multiple Testing for SNP-SNP Interactions
Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.2202/1544-6115.1283/pdf?lang=en
Scroll to top button