TRAB: Testing Whether Mutation Frequencies Are Above an Unknown Background
-
Giovanni Parmigiani
, Sining Chen and Victor E. Velculescu
To rigorously determine whether a gene or a set of genes have alterations that are involved in carcinogenesis requires a comparison of the prevalence of identified changes to a control mutation frequency present in tumor DNA. To facilitate this task, we develop a testing approach and the associated R library, called TRAB, that evaluates whether the frequency of somatic mutation in a given gene is higher than that observed in a control group of genes. Specifically, we test the null hypothesis that the frequency belongs to a control population of frequencies, against the alternative hypothesis that the frequency is higher. Mutation frequencies in the control group are themselves allowed to be variable. TRAB computes the a posteriori probability and the Bayes factor for the hypothesis using a hierarchical Bayesian approach.
©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
Articles in the same Issue
- Article
- Self-Organizing Maps with Statistical Phase Synchronization (SOMPS) for Analyzing Cell Cycle-Specific Gene Expression Data
- Coalescent Time Distributions in Trees of Arbitrary Size
- Quantifying the Association between Gene Expressions and DNA-Markers by Penalized Canonical Correlation Analysis
- Nonparametric Functional Mapping of Quantitative Trait Loci Underlying Programmed Cell Death
- Accommodating Uncertainty in a Tree Set for Function Estimation
- Drifting Markov Models with Polynomial Drift and Applications to DNA Sequences
- Comparing the Characteristics of Gene Expression Profiles Derived by Univariate and Multivariate Classification Methods
- Calculating Confidence Intervals for Prediction Error in Microarray Classification Using Resampling
- Structure Learning in Nested Effects Models
- Correcting the Estimated Level of Differential Expression for Gene Selection Bias: Application to a Microarray Study
- Adapting Prediction Error Estimates for Biased Complexity Selection in High-Dimensional Bootstrap Samples
- Adaptive Choice of the Number of Bootstrap Samples in Large Scale Multiple Testing
- Re-Cracking the Nucleosome Positioning Code
- Semi-Parametric Differential Expression Analysis via Partial Mixture Estimation
- A SNP Streak Model for the Identification of Genetic Regions Identical-by-descent
- Detecting Two-Locus Gene-Gene Effects Using Monotonisation of the Penetrance Matrix
- Modeling DNA Methylation in a Population of Cancer Cells
- Phenotyping Genetic Diseases Using an Extension of µ-Scores for Multivariate Data
- The Estimator of the Optimal Measure of Allelic Association: Mean, Variance and Probability Distribution When the Sample Size Tends to Infinity
- Predicting Protein Concentrations with ELISA Microarray Assays, Monotonic Splines and Monte Carlo Simulation
- A Comparison of Normalization Techniques for MicroRNA Microarray Data
- Collapsing SNP Genotypes in Case-Control Genome-Wide Association Studies Increases the Type I Error Rate and Power
- Estimating Number of Clusters Based on a General Similarity Matrix with Application to Microarray Data
- Data Distribution of Short Oligonucleotide Expression Arrays and Its Application to the Construction of a Generalized Intellectual Framework
- Approximately Sufficient Statistics and Bayesian Computation
- A Composite-Conditional-Likelihood Approach for Gene Mapping Based on Linkage Disequilibrium in Windows of Marker Loci
- Statistical Methods in Integrative Analysis for Gene Regulatory Modules
- Reducing Spatial Flaws in Oligonucleotide Arrays by Using Neighborhood Information
- Pattern Classification of Phylogeny Signals
- A Unification of Multivariate Methods for Meta-Analysis of Genetic Association Studies
- Importance Sampling for the Infinite Sites Model
- Supervised Distance Matrices
- Addressing the Shortcomings of Three Recent Bayesian Methods for Detecting Interspecific Recombination in DNA Sequence Alignments
- A Sparse PLS for Variable Selection when Integrating Omics Data
- Software Communication
- TRAB: Testing Whether Mutation Frequencies Are Above an Unknown Background
Articles in the same Issue
- Article
- Self-Organizing Maps with Statistical Phase Synchronization (SOMPS) for Analyzing Cell Cycle-Specific Gene Expression Data
- Coalescent Time Distributions in Trees of Arbitrary Size
- Quantifying the Association between Gene Expressions and DNA-Markers by Penalized Canonical Correlation Analysis
- Nonparametric Functional Mapping of Quantitative Trait Loci Underlying Programmed Cell Death
- Accommodating Uncertainty in a Tree Set for Function Estimation
- Drifting Markov Models with Polynomial Drift and Applications to DNA Sequences
- Comparing the Characteristics of Gene Expression Profiles Derived by Univariate and Multivariate Classification Methods
- Calculating Confidence Intervals for Prediction Error in Microarray Classification Using Resampling
- Structure Learning in Nested Effects Models
- Correcting the Estimated Level of Differential Expression for Gene Selection Bias: Application to a Microarray Study
- Adapting Prediction Error Estimates for Biased Complexity Selection in High-Dimensional Bootstrap Samples
- Adaptive Choice of the Number of Bootstrap Samples in Large Scale Multiple Testing
- Re-Cracking the Nucleosome Positioning Code
- Semi-Parametric Differential Expression Analysis via Partial Mixture Estimation
- A SNP Streak Model for the Identification of Genetic Regions Identical-by-descent
- Detecting Two-Locus Gene-Gene Effects Using Monotonisation of the Penetrance Matrix
- Modeling DNA Methylation in a Population of Cancer Cells
- Phenotyping Genetic Diseases Using an Extension of µ-Scores for Multivariate Data
- The Estimator of the Optimal Measure of Allelic Association: Mean, Variance and Probability Distribution When the Sample Size Tends to Infinity
- Predicting Protein Concentrations with ELISA Microarray Assays, Monotonic Splines and Monte Carlo Simulation
- A Comparison of Normalization Techniques for MicroRNA Microarray Data
- Collapsing SNP Genotypes in Case-Control Genome-Wide Association Studies Increases the Type I Error Rate and Power
- Estimating Number of Clusters Based on a General Similarity Matrix with Application to Microarray Data
- Data Distribution of Short Oligonucleotide Expression Arrays and Its Application to the Construction of a Generalized Intellectual Framework
- Approximately Sufficient Statistics and Bayesian Computation
- A Composite-Conditional-Likelihood Approach for Gene Mapping Based on Linkage Disequilibrium in Windows of Marker Loci
- Statistical Methods in Integrative Analysis for Gene Regulatory Modules
- Reducing Spatial Flaws in Oligonucleotide Arrays by Using Neighborhood Information
- Pattern Classification of Phylogeny Signals
- A Unification of Multivariate Methods for Meta-Analysis of Genetic Association Studies
- Importance Sampling for the Infinite Sites Model
- Supervised Distance Matrices
- Addressing the Shortcomings of Three Recent Bayesian Methods for Detecting Interspecific Recombination in DNA Sequence Alignments
- A Sparse PLS for Variable Selection when Integrating Omics Data
- Software Communication
- TRAB: Testing Whether Mutation Frequencies Are Above an Unknown Background