Prediction of Genomewide Conserved Epitope Profiles of HIV-1: Classifier Choice and Peptide Representation
-
Yuanyuan Xiao
and Mark R Segal
Identification of peptides binding to Major Histocompatibility Complex (MHC) molecules is important for accelerating vaccine development and improving immunotherapy. Accordingly, a wide variety of prediction methods have been applied in this context. In this paper, we introduce (tree-based) ensemble classifiers for such problems and contrast their predictive performance with forefront existing methods for both MHC class I and class II molecules. In addition, we investigate the impact of differing peptide representation schemes on performance. Finally, classifier predictions are used to conduct genomewide scans of a diverse collection of HIV-1 strains, enabling assessment of epitope conservation. We investigated all combinations of six classification methods (classification trees, artificial neural networks, support vector machines, as well as the more recently devised ensemble methods (bagging, random forests, boosting) with four peptide representation schemes (amino acid sequence, select biophysical properties, select quantitative structure-activity relationship (QSAR) descriptors, and the combination of the latter two) in predicting peptide binding to an MHC class I molecule (HLA-A2) and MHC class II molecule (HLA-DR4). Our results show that the ensemble methods are consistently more accurate than the other three alternatives. Furthermore, they are robust with respect to parameter tuning. Among the four representation schemes, the amino acid sequence representation gave consistently (across classifiers) best results. This finding obviates the need for feature selection strategies incurred by use of biophysical and/or QSAR properties. We obtained, and aligned, a diverse set of 32 HIV-1 genomes and pursued genomewide HLA-DR4 epitope profiling by querying with respect to classifier predictions, as obtained under each of the four peptide representation schemes. We validated those epitopes conserved across strains against known T-cell epitopes. Once again, amino acid sequence representation was at least as effective as using properties. Assessment of novel epitope predictions awaits experimental verification.
©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
Articles in the same Issue
- Article
- Estimating Motifs Under Order Restrictions
- Reproducible Research: A Bioinformatics Case Study
- Generalized Rank Tests for Replicated Microarray Data
- Stepwise Normalization of Two-Channel Spotted Microarrays
- Comparing Automatic and Manual Image Processing in FLARE Assay Analysis for Colon Carcinogenesis
- Pixel-level Signal Modelling with Spatial Correlation for Two-Colour Microarrays
- Empirical Bayes Microarray ANOVA and Grouping Cell Lines by Equal Expression Levels
- Multiple Testing and Data Adaptive Regression: An Application to HIV-1 Sequence Data.
- Early Diagnostic Marker Panel Determination for Microarray Based Clinical Studies
- Prediction of Missing Values in Microarray and Use of Mixed Models to Evaluate the Predictors
- Combined Association and Linkage Analysis for General Pedigrees and Genetic Models
- Incorporating Biological Information as a Prior in an Empirical Bayes Approach to Analyzing Microarray Data
- The Relative Inefficiency of Sequence Weights Approaches in Determining a Nucleotide Position Weight Matrix
- A Simple Loglinear Model for Haplotype Effects in a Case-Control Study Involving Two Unphased Genotypes
- Extension of the SIMLA Package for Generating Pedigrees with Complex Inheritance Patterns: Environmental Covariates, Gene-Gene and Gene-Environment Interaction
- Error Distribution for Gene Expression Data
- A General Framework for Weighted Gene Co-Expression Network Analysis
- Statistical Inference in Evolutionary Models of DNA Sequences via the EM Algorithm
- Comparing Bacterial DNA Microarray Fingerprints
- Continuous Covariates in Genetic Association Studies of Case-Parent Triads: Gene and Gene-Environment Interaction Effects, Population Stratification, and Power Analysis
- Robust Remote Homology Detection by Feature Based Profile Hidden Markov Models
- Empirical Bayes Estimation of a Sparse Vector of Gene Expression Changes
- Hierarchical Inverse Gaussian Models and Multiple Testing: Application to Gene Expression Data
- FADO: A Statistical Method to Detect Favored or Avoided Distances between Occurrences of Motifs using the Hawkes' Model
- Prediction of Genomewide Conserved Epitope Profiles of HIV-1: Classifier Choice and Peptide Representation
- Fold-Change Estimation of Differentially Expressed Genes using Mixture Mixed-Model
- Test on the Structure of Biological Sequences via Chaos Game Representation
- Reverse Engineering Galactose Regulation in Yeast through Model Selection
- Empirical Bayes and Resampling Based Multiple Testing Procedure Controlling Tail Probability of the Proportion of False Positives.
- Weighted Analysis of Paired Microarray Experiments
- A Probabilistic Approach to Large-Scale Association Scans: A Semi-Bayesian Method to Detect Disease-Predisposing Alleles
- A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics
- Structured Antedependence Models for Functional Mapping of Multiple Longitudinal Traits
- Correlation Between Gene Expression Levels and Limitations of the Empirical Bayes Methodology for Finding Differentially Expressed Genes
- Bayesian Statistical Studies of the Ramachandran Distribution
- On Reference Designs For Microarray Experiments
- Computing Asymptotic Power and Sample Size for Case-Control Genetic Association Studies in the Presence of Phenotype and/or Genotype Misclassification Errors
Articles in the same Issue
- Article
- Estimating Motifs Under Order Restrictions
- Reproducible Research: A Bioinformatics Case Study
- Generalized Rank Tests for Replicated Microarray Data
- Stepwise Normalization of Two-Channel Spotted Microarrays
- Comparing Automatic and Manual Image Processing in FLARE Assay Analysis for Colon Carcinogenesis
- Pixel-level Signal Modelling with Spatial Correlation for Two-Colour Microarrays
- Empirical Bayes Microarray ANOVA and Grouping Cell Lines by Equal Expression Levels
- Multiple Testing and Data Adaptive Regression: An Application to HIV-1 Sequence Data.
- Early Diagnostic Marker Panel Determination for Microarray Based Clinical Studies
- Prediction of Missing Values in Microarray and Use of Mixed Models to Evaluate the Predictors
- Combined Association and Linkage Analysis for General Pedigrees and Genetic Models
- Incorporating Biological Information as a Prior in an Empirical Bayes Approach to Analyzing Microarray Data
- The Relative Inefficiency of Sequence Weights Approaches in Determining a Nucleotide Position Weight Matrix
- A Simple Loglinear Model for Haplotype Effects in a Case-Control Study Involving Two Unphased Genotypes
- Extension of the SIMLA Package for Generating Pedigrees with Complex Inheritance Patterns: Environmental Covariates, Gene-Gene and Gene-Environment Interaction
- Error Distribution for Gene Expression Data
- A General Framework for Weighted Gene Co-Expression Network Analysis
- Statistical Inference in Evolutionary Models of DNA Sequences via the EM Algorithm
- Comparing Bacterial DNA Microarray Fingerprints
- Continuous Covariates in Genetic Association Studies of Case-Parent Triads: Gene and Gene-Environment Interaction Effects, Population Stratification, and Power Analysis
- Robust Remote Homology Detection by Feature Based Profile Hidden Markov Models
- Empirical Bayes Estimation of a Sparse Vector of Gene Expression Changes
- Hierarchical Inverse Gaussian Models and Multiple Testing: Application to Gene Expression Data
- FADO: A Statistical Method to Detect Favored or Avoided Distances between Occurrences of Motifs using the Hawkes' Model
- Prediction of Genomewide Conserved Epitope Profiles of HIV-1: Classifier Choice and Peptide Representation
- Fold-Change Estimation of Differentially Expressed Genes using Mixture Mixed-Model
- Test on the Structure of Biological Sequences via Chaos Game Representation
- Reverse Engineering Galactose Regulation in Yeast through Model Selection
- Empirical Bayes and Resampling Based Multiple Testing Procedure Controlling Tail Probability of the Proportion of False Positives.
- Weighted Analysis of Paired Microarray Experiments
- A Probabilistic Approach to Large-Scale Association Scans: A Semi-Bayesian Method to Detect Disease-Predisposing Alleles
- A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics
- Structured Antedependence Models for Functional Mapping of Multiple Longitudinal Traits
- Correlation Between Gene Expression Levels and Limitations of the Empirical Bayes Methodology for Finding Differentially Expressed Genes
- Bayesian Statistical Studies of the Ramachandran Distribution
- On Reference Designs For Microarray Experiments
- Computing Asymptotic Power and Sample Size for Case-Control Genetic Association Studies in the Presence of Phenotype and/or Genotype Misclassification Errors