Home Physical Sciences H/D methane isotopologues dissolved in magmatic fluids: Stable hydrogen isotope fractionations in the Earth’s interior
Article
Licensed
Unlicensed Requires Authentication

H/D methane isotopologues dissolved in magmatic fluids: Stable hydrogen isotope fractionations in the Earth’s interior

  • Dionysis I. Foustoukos EMAIL logo and Bjorn O. Mysen
Published/Copyright: March 7, 2015
Become an author with De Gruyter Brill

Abstract

A series of hydrothermal diamond-anvil cell experiments have been conducted to evaluate the role of supercritical water on the isotopic equilibrium between H/D methane isotopologues at 600-800 °C and 409-1622 MPa. Raman spectroscopy was deployed to investigate the distribution of H/D isotopic molecules formed during hydrothermal decomposition of Si5C12H36 in H2O-D2O aqueous solutions. To this end, the intensities of the fundamental vibrational C-H and C-D modes of deuteromethanes were employed to determine the thermodynamic properties of isotope exchange reactions between H/D isotopologues and to constrain the methane D/H molar ratios. By adjusting the initial volume ratios of silane/H2O-D2O, reactions in the CH4-D2O-H2O system were monitored for gaseous and supercritical-water phases. Discreet differences between the equilibrium constants, describing the relationship between the CH3D-CH2D2-CHD3-CH4 species dissolved in supercritical water or present as a homogeneous gas phase, are revealed. The bulk D/H methane composition in the liquid-system is also twice that of the D/H molar ratios recorded in the gas-bearing system. Accordingly, condensedphase isotope effects are inferred to play a key role on the evolution of H/D isotopologues, likely induced by differences in the solubility of the isotopic molecules driven by the excess energy/entropy developed during mixing of non-polar species in the H2O-D2O structure. Our experiments show that isotope fractionation effects need to account for the presence of condensed matter (e.g., melts, magmatic fluids), even at conditions at which theoretical models suggest minimal (or nonexistent) isotope exchange, but comparable to those within the Earth’s interior.

Received: 2012-11-28
Accepted: 2013-1-26
Published Online: 2015-3-7
Published in Print: 2013-5-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Review: Versatile Monazite: resolving geological records and solving challenges in materials science. Generalizations about monazite: Implications for geochronologic studies
  2. Versatile Monazite: Resolving geological records and solving challenges in materials science. Monazite as a promising long-term radioactive waste matrix: Benefits of high-structural flexibility and chemical durability
  3. Incorporation of Ge in ferrihydrite: Implications for the structure of ferrihydrite
  4. The pressures and temperatures of meteorite impact: Evidence from micro-Raman mapping of mineral phases in the strongly shocked Taiban ordinary chondrite
  5. Kangite, (Sc,Ti,Al,Zr,Mg,Ca,⃞)2O3, a new ultra-refractory scandia mineral from the Allende meteorite: Synchrotron micro-Laue diffraction and electron backscatter diffraction
  6. New insights into the formation of diagenetic illite from TEM studies
  7. Solidification of trapped liquid in rocks and crystals
  8. Using the chemical composition of carbonate rocks on Mars as a record of secondary interaction with liquid water
  9. Multinuclear NMR study of Cs-bearing geyserites of the Targejia hot spring cesium deposit in Tibet
  10. Clay minerals as geo-thermometer: A comparative study based on high spatial resolution analyses of illite and chlorite in Gulf Coast sandstones (Texas, U.S.A.)
  11. Incorporation of Zn in the destabilization products of muscovite at 1175 °C under disequilibrium conditions, and implications for heavy metal sequestration
  12. H/D methane isotopologues dissolved in magmatic fluids: Stable hydrogen isotope fractionations in the Earth’s interior
  13. Ca-Sr fractionation between zoisite, lawsonite, and aqueous fluids: An experimental study at 2.0 and 4.0 GPa/400 to 800 °C
  14. The infrared vibrational spectrum of andradite-grossular solid solutions: A quantum mechanical simulation
  15. Occurrence of silica polymorphs nanocrystals in tuffaceous rocks, Province of the Mesa Central, Mexico, and their formation from subcritical Si-rich fluids
  16. Pressure-induced Pbca-P21/c phase transition of natural orthoenstatite: Compositional effect and its geophysical implications
  17. High-pressure and high-temperature equation of state of cobalt oxide: Implications for redox relations in Earth’s mantle
  18. Synthesis and characterization of kanemite from fluoride-containing media: Influence of the alkali cation
  19. Structure of prismatic halloysite
  20. Fluorophlogopite from Piano delle Concazze (Mt. Etna, Italy): Crystal chemistry and implications for the crystallization conditions
  21. Analysis of hydrogen and fluorine in pyroxenes: I. Orthopyroxene
  22. Analysis of hydrogen and fluorine in pyroxenes: II. Clinopyroxene
  23. Letter. A carbonate-fluoride defect model for carbonate-rich fluorapatite
  24. Letter. Kumdykolite, a high-temperature feldspar from an enstatite chondrite
  25. Letter. High-pressure aragonite phenocrysts in carbonatite and carbonated syenite xenoliths within an alkali basalt
Downloaded on 11.2.2026 from https://www.degruyterbrill.com/document/doi/10.2138/am.2013.4419/html
Scroll to top button