Home Incorporation of Ge in ferrihydrite: Implications for the structure of ferrihydrite
Article
Licensed
Unlicensed Requires Authentication

Incorporation of Ge in ferrihydrite: Implications for the structure of ferrihydrite

  • Dogan Paktunc EMAIL logo , Alain Manceau and John Dutrizac
Published/Copyright: March 7, 2015
Become an author with De Gruyter Brill

Abstract

Ferrihydrite is the main form of ferric iron in surficial environments and a key reactive nanoparticle that regulates nutrient availability and the mobility of metal(loid) contaminants, yet its structure is not completely elucidated. Two models exist to date: the “f-phase” in which Fe is fully octahedral and the “akdalaite-model” possessing 20% of the Fe atoms in tetrahedral coordination. In this study, germanium was used as a structural probe to re-examine the validity of the latter model. Germaniumbearing ferrihydrites containing 0.2, 0.6, 1.4, 2.2, 2.9, 3.8, 12, and 15 wt% Ge were synthesized in the laboratory at 25 and 65 °C. X-ray diffraction analyses showed all the precipitates to be six-line ferrihydrite. Semi-quantitative energy-dispersive X-ray microanalyses (TEM) indicate that the precipitates made from solutions having Fe/Ge molar ratios of two and four have Fe/Ge atomic ratios of 3.8-3.9 and 4.4-5.1, respectively, which suggest a limit of Ge uptake in ferrihydrite of about 20 at% relative to total cations. Based on TEM examinations, these high Ge-bearing ferrihydrites are homogenous and consist of equant and plate-like crystallites about 5-6 nm in size. Furthermore, it appears that higher Ge concentrations in solution have no significant effect on the crystallite size, supporting the incorporation of Ge in the ferrihydrite structure. Extended X-ray absorption fine structure (EXAFS) spectroscopy indicated that the Fe atoms in both the low and high Ge-bearing ferrihydrites are in octahedral coordination and that Ge occurs in the ferrihydrite structure by filling the empty tetrahedral sites and coordinating to 4 edge-sharing FeO6 trimers through sharing a common oxygen (Ge-O-Fe linkage). Incorporation of the Ge tetrahedra in the ferrihydrite structure requires redistribution of Fe occupancy along the alternating O/OH layers while forming an ordered distribution of octahedral Fe and tetrahedral Ge. The local structure around Ge mimics a Keggin-like motif in two different, yet equivalent, orientations. It appears that the split diffraction peak at 1.46 and 1.51 Å is a characteristic feature of Ge-rich ferrihydrite and suggests that it is a fingerprint of increased order due to significant Ge incorporation in the tetrahedral sites. The findings can be rationalized in terms of the incorporation of Ge in the so-called “f-phase” of the classical ferrihydrite model, and demonstrate the flexibility of the model in terms of accommodating a Keggin-like cluster without the need of imposing unrealistic constraints as in the akdalaite model. Direct comparison of the imaginary parts of the Fourier transforms for ferrihydrite and maghemite further confirms the absence of tetrahedral Fe in ferrihydrite. The absence of tetrahedral Fe substantiates the use of goethite-like or akaganeite-like models to describe the polyhedral structure of ferrihydrite used in modeling sorption reactions at the ferrihydrite-water interface.

Received: 2012-8-3
Accepted: 2013-1-11
Published Online: 2015-3-7
Published in Print: 2013-5-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Review: Versatile Monazite: resolving geological records and solving challenges in materials science. Generalizations about monazite: Implications for geochronologic studies
  2. Versatile Monazite: Resolving geological records and solving challenges in materials science. Monazite as a promising long-term radioactive waste matrix: Benefits of high-structural flexibility and chemical durability
  3. Incorporation of Ge in ferrihydrite: Implications for the structure of ferrihydrite
  4. The pressures and temperatures of meteorite impact: Evidence from micro-Raman mapping of mineral phases in the strongly shocked Taiban ordinary chondrite
  5. Kangite, (Sc,Ti,Al,Zr,Mg,Ca,⃞)2O3, a new ultra-refractory scandia mineral from the Allende meteorite: Synchrotron micro-Laue diffraction and electron backscatter diffraction
  6. New insights into the formation of diagenetic illite from TEM studies
  7. Solidification of trapped liquid in rocks and crystals
  8. Using the chemical composition of carbonate rocks on Mars as a record of secondary interaction with liquid water
  9. Multinuclear NMR study of Cs-bearing geyserites of the Targejia hot spring cesium deposit in Tibet
  10. Clay minerals as geo-thermometer: A comparative study based on high spatial resolution analyses of illite and chlorite in Gulf Coast sandstones (Texas, U.S.A.)
  11. Incorporation of Zn in the destabilization products of muscovite at 1175 °C under disequilibrium conditions, and implications for heavy metal sequestration
  12. H/D methane isotopologues dissolved in magmatic fluids: Stable hydrogen isotope fractionations in the Earth’s interior
  13. Ca-Sr fractionation between zoisite, lawsonite, and aqueous fluids: An experimental study at 2.0 and 4.0 GPa/400 to 800 °C
  14. The infrared vibrational spectrum of andradite-grossular solid solutions: A quantum mechanical simulation
  15. Occurrence of silica polymorphs nanocrystals in tuffaceous rocks, Province of the Mesa Central, Mexico, and their formation from subcritical Si-rich fluids
  16. Pressure-induced Pbca-P21/c phase transition of natural orthoenstatite: Compositional effect and its geophysical implications
  17. High-pressure and high-temperature equation of state of cobalt oxide: Implications for redox relations in Earth’s mantle
  18. Synthesis and characterization of kanemite from fluoride-containing media: Influence of the alkali cation
  19. Structure of prismatic halloysite
  20. Fluorophlogopite from Piano delle Concazze (Mt. Etna, Italy): Crystal chemistry and implications for the crystallization conditions
  21. Analysis of hydrogen and fluorine in pyroxenes: I. Orthopyroxene
  22. Analysis of hydrogen and fluorine in pyroxenes: II. Clinopyroxene
  23. Letter. A carbonate-fluoride defect model for carbonate-rich fluorapatite
  24. Letter. Kumdykolite, a high-temperature feldspar from an enstatite chondrite
  25. Letter. High-pressure aragonite phenocrysts in carbonatite and carbonated syenite xenoliths within an alkali basalt
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2013.4312/html
Scroll to top button