Home Microtexture development during rapid cooling in three rhyolitic lava flows
Article
Licensed
Unlicensed Requires Authentication

Microtexture development during rapid cooling in three rhyolitic lava flows

  • Sheila J. Seaman EMAIL logo
Published/Copyright: March 7, 2015
Become an author with De Gruyter Brill

Abstract

The effects of water concentration and degassing history on the development of spherulites and flow banding were examined in three middle Tertiary rhyolitic lava flows from the Atascosa Mountains of southern Arizona. The Hell’s Gate lava flow and the Atascosa lava flow host spherulites of strongly contrasting texture, and neither are flow banded. The Sycamore Canyon lava flow is a flowbanded rhyolite that hosts two populations of spherulites. Spherulites in the Hell’s Gate lava flow consist of two to four generations of bladed radiating alkali feldspar crystals that increase in water concentration along their length. Needle-like radiating feldspar crystals in spherulites in the Atascosa and Sycamore Canyon lava flows are in some cases punctuated by concentric rinds of glass that are reservoirs for water rejected by the feldspar crystals. The differences in spherulite crystal morphology between the Sycamore Canyon and Atasocosa flows (both needle-like) and the Hell’s Gate flow (bladed) may reflect a more rapid cooling rate of the Sycamore Canyon and Atascosa flows. Thick gray flow bands in the Sycamore Canyon lava flow host higher water concentrations than thin orange flow bands, suggesting that flow bands are zones of greater and lesser volatile concentration, deformed by stretching of the flowing magma. Temperature was uniform across the light and dark flow bands of the Sycamore Canyon flow, indicating that water concentration, one of the variables that controls diffusion coefficients, rather than temperature, controlled spherulite size in this case. Phenocrysts in the Hell’s Gate lava flow are strongly resorbed, probably as a result of magma ascent along a nearadiabatic gradient that resulted in exsolution of water from the melt, and subsequent dissolution of existing quartz phenocrysts by the water-rich melt. Resumption of crystallization of anhydrous phases such as quartz and feldspar would have further enriched the melt in water, facilitating the growth of spherulites. Spherulites in two of the lava flows (Sycamore Canyon and Hell’s Gate) increase in water concentration from core to rim, as would be expected in spherulites growing in melt enriched in water rejected by the growing feldspar crystals. Spherulites in the Atascosa rhyolite flow decrease slightly in water concentration from core to rim, possibly because the magma degassed during spherulite growth. Calculation of water concentration profiles in spherulites from all three rhyolite flows on the basis of Rayleigh fractionation of water between sanidine and rhyolitic melt shows that the very high water concentrations in spherulites (typically >0.6 × water concentration in surrounding glass) cannot be accounted for by Rayleigh fractionation. Instead it is likely that sanidine incorporated water as fluid inclusions and/or as water clusters during rapid crystal growth. Water concentration profiles in the glass surrounding spherulites do not preserve the high concentration zone at the spherulite boundary that has been observed in younger lava flows, so that spherulite growth rates cannot be calculated on the basis of mass-balance calculations of distribution of water during spherulite growth. Rather, the water concentration profile in the surrounding glass is a half plateau, the height of which is approximately equivalent to the far-field water concentration in the surrounding glass, indicating that water that accumulated at the spherulite/magma boundary diffused sufficiently rapidly to equilibrate with the surrounding magma as the lava flow cooled.

Received: 2012-8-3
Accepted: 2012-10-18
Published Online: 2015-3-7
Published in Print: 2013-2-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Pressure-induced structural transformations in the low-cristobalite form of AlPO4
  2. Hydrokenomicrolite, (□,H2O)2Ta2(O,OH)6(H2O), a new microlite-group mineral from Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil
  3. Fluor-elbaite, Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3F, a new mineral species of the tourmaline supergroup
  4. Microtexture development during rapid cooling in three rhyolitic lava flows
  5. Microbial and inorganic control on the composition of clay from volcanic glass alteration experiments
  6. High-pressure experiments on phase transition boundaries between corundum, Rh2O3(II)- and CaIrO3-type structures in Al2O3
  7. Electronic structure effects in the vectorial bond-valence model
  8. Geometric analysis of radiation damage connectivity in zircon, and its implications for helium diffusion
  9. Superstructure, crystal chemistry, and cation distribution in filipstadite, a Sb5+-bearing, spinel-related mineral
  10. A high-temperature Brillouin scattering study on four compositions of haplogranitic glasses and melts: High-frequency elastic behavior through the glass transition
  11. Hydrogen isotope fractionation between coexisting hydrous melt and silicate-saturated aqueous fluid: An experimental study in situ at high pressure and temperature
  12. Eclogitic clasts with omphacite and pyrope-rich garnet in the NWA 801 CR2 chondrite
  13. Hydration properties of synthetic high-charge micas saturated with different cations: An experimental approach
  14. Quantitative analyses of powdered multi-minerallic carbonate aggregates using a portable Raman spectrometer
  15. Periodic ab initio bulk investigation of hydroxylapatite and type A carbonated apatite with both pseudopotential and all-electron basis sets for calcium atoms
  16. Coexisting pseudobrookite, ilmenite, and titanomagnetite in hornblende andesite of the Coleman Pinnacle flow, Mount Baker, Washington: Evidence for a highly oxidized arc magma
  17. Geochemistry of pyrochlore minerals from the Motzfeldt Center, South Greenland: The mineralogy of a syenite-hosted Ta, Nb deposit
  18. Phosphovanadylite-Ca, Ca[V4 4+P2O8(OH)8]·12H2O, the Ca analogue of phosphovanadylite-Ba
  19. The relationship between REE-Y-Nb-Th minerals and the evolution of an A-type granite, Wentworth Pluton, Nova Scotia
  20. Prewittite, KPb1.5Cu6Zn(SeO3)2O2Cl10, a new mineral from Tolbachik fumaroles, Kamchatka peninsula, Russia: Description and crystal structure
  21. Lucabindiite, (K,NH4)As4O6(Cl,Br), a new fumarole mineral from the “La Fossa” crater at Vulcano, Aeolian Islands, Italy
  22. Scottyite, the natural analog of synthetic BaCu2Si2O7, a new mineral from the Wessels mine, Kalahari Manganese Fields, South Africa
  23. Oxy-schorl, Na(Fe2 2+Al)Al6Si6O18(BO3)3(OH)3O, a new mineral from Zlatá Idka, Slovak Republic and Přibyslavice, Czech Republic
  24. Crystal chemistry and hydrogen bonding of rustumite Ca10(Si2O7)2(SiO4)(OH)2Cl2 with variable OH, Cl, F
  25. Oxy-vanadium-dravite, NaV3(V4Mg2)(Si6O18)(BO3)3(OH)3O: Crystal structure and redefinition of the “vanadium-dravite” tourmaline
  26. Lead-tellurium oxysalts from Otto Mountain near Baker, California: VIII. Fuettererite, Pb3Cu2+ 6 Te6+O6(OH)7Cl5, a new mineral with double spangolite-type sheets
  27. Lead-tellurium oxysalts from Otto Mountain near Baker, California: IX. Agaite, Pb3Cu2+Te6+O5(OH)2(CO3), a new mineral with CuO5-TeO6 polyhedral sheets
  28. Letter: Actinides in Geology, Energy, and the Environment. Evidence for nanocrystals of vorlanite, a rare uranate mineral, in the Nopal I low-temperature uranium deposit (Sierra Peña Blanca, Mexico)
Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2013.4313/html
Scroll to top button