Home Lucabindiite, (K,NH4)As4O6(Cl,Br), a new fumarole mineral from the “La Fossa” crater at Vulcano, Aeolian Islands, Italy
Article
Licensed
Unlicensed Requires Authentication

Lucabindiite, (K,NH4)As4O6(Cl,Br), a new fumarole mineral from the “La Fossa” crater at Vulcano, Aeolian Islands, Italy

  • Anna Garavelli EMAIL logo , Donatella Mitolo , Daniela Pinto and Filippo Vurro
Published/Copyright: March 7, 2015
Become an author with De Gruyter Brill

Abstract

Lucabindiite, ideally (K,NH4)As4O6(Cl,Br), is a new mineral found as a medium-temperature fumarole encrustation (T = 170 °C) at “La Fossa” crater of Vulcano, Aeolian Islands, Italy. The mineral deposited as aggregates of micrometer-sized hexagonal and platy crystals on the surface of the pyroclastic breccia in association with arsenolite, sal ammoniac, sulfur, and amorphous arsenic-rich sulfurite. The new mineral is colorless to white, transparent, non-fluorescent, has a vitreous luster and a white streak. The calculated density is 3.68 g/cm3. Lucabindiite is hexagonal, space group P6/mmm, with a = 5.2386(7) Å, c = 9.014(2) Å, V = 214.23(7) Å3, and Z = 1. The eight strongest reflections in the X-ray powderdiffraction data [d in Å (I) (hkl)] are: 3.20 (100) (102), 2.62 (67) (110), 4.51 (52) (002), 4.54 (30) (100), 1.97 (28) (113), 1.49 (21) (115), 1.60 (21) (212), 2.26 (19) (112). Lucabindiite’s average chemical composition is (wt%): K2O 5.14, As2O3 84.71, Cl 3.63, Br 6.92, F 0.77, (NH4)2O 2.73, O=F,Cl,Br -1.84, total 102.06. The empirical chemical formula, calculated on the basis of 7 anions pfu, is [K0.51(NH4)0.49]Σ1.00 As4.00O5.93(Cl0.48Br0.40F0.19)Σ1.07. According to chemical analyses and X-ray data, lucabindiite is the natural analog of synthetic phases with general formula MAs4O6X where M = K, NH4 and X = Cl, Br, I. The crystal structure is characterized by neutral As2O3 sheets arranged parallel to (001). The As atoms of two neighboring sheets point at each other and the sheets are separated by interlayer M (=K, NH4) and X (=Cl, Br, F) atoms. The name is in honor of Luca Bindi (b. 1971), Professor of Mineralogy and former Head of the Division of Mineralogy of the Natural History Museum of the University of Florence. Both the mineral and the mineral name have been approved by the IMA-CNMNC Commission (IMA 2011-010).

Received: 2012-3-28
Accepted: 2012-10-9
Published Online: 2015-3-7
Published in Print: 2013-2-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Pressure-induced structural transformations in the low-cristobalite form of AlPO4
  2. Hydrokenomicrolite, (□,H2O)2Ta2(O,OH)6(H2O), a new microlite-group mineral from Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil
  3. Fluor-elbaite, Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3F, a new mineral species of the tourmaline supergroup
  4. Microtexture development during rapid cooling in three rhyolitic lava flows
  5. Microbial and inorganic control on the composition of clay from volcanic glass alteration experiments
  6. High-pressure experiments on phase transition boundaries between corundum, Rh2O3(II)- and CaIrO3-type structures in Al2O3
  7. Electronic structure effects in the vectorial bond-valence model
  8. Geometric analysis of radiation damage connectivity in zircon, and its implications for helium diffusion
  9. Superstructure, crystal chemistry, and cation distribution in filipstadite, a Sb5+-bearing, spinel-related mineral
  10. A high-temperature Brillouin scattering study on four compositions of haplogranitic glasses and melts: High-frequency elastic behavior through the glass transition
  11. Hydrogen isotope fractionation between coexisting hydrous melt and silicate-saturated aqueous fluid: An experimental study in situ at high pressure and temperature
  12. Eclogitic clasts with omphacite and pyrope-rich garnet in the NWA 801 CR2 chondrite
  13. Hydration properties of synthetic high-charge micas saturated with different cations: An experimental approach
  14. Quantitative analyses of powdered multi-minerallic carbonate aggregates using a portable Raman spectrometer
  15. Periodic ab initio bulk investigation of hydroxylapatite and type A carbonated apatite with both pseudopotential and all-electron basis sets for calcium atoms
  16. Coexisting pseudobrookite, ilmenite, and titanomagnetite in hornblende andesite of the Coleman Pinnacle flow, Mount Baker, Washington: Evidence for a highly oxidized arc magma
  17. Geochemistry of pyrochlore minerals from the Motzfeldt Center, South Greenland: The mineralogy of a syenite-hosted Ta, Nb deposit
  18. Phosphovanadylite-Ca, Ca[V4 4+P2O8(OH)8]·12H2O, the Ca analogue of phosphovanadylite-Ba
  19. The relationship between REE-Y-Nb-Th minerals and the evolution of an A-type granite, Wentworth Pluton, Nova Scotia
  20. Prewittite, KPb1.5Cu6Zn(SeO3)2O2Cl10, a new mineral from Tolbachik fumaroles, Kamchatka peninsula, Russia: Description and crystal structure
  21. Lucabindiite, (K,NH4)As4O6(Cl,Br), a new fumarole mineral from the “La Fossa” crater at Vulcano, Aeolian Islands, Italy
  22. Scottyite, the natural analog of synthetic BaCu2Si2O7, a new mineral from the Wessels mine, Kalahari Manganese Fields, South Africa
  23. Oxy-schorl, Na(Fe2 2+Al)Al6Si6O18(BO3)3(OH)3O, a new mineral from Zlatá Idka, Slovak Republic and Přibyslavice, Czech Republic
  24. Crystal chemistry and hydrogen bonding of rustumite Ca10(Si2O7)2(SiO4)(OH)2Cl2 with variable OH, Cl, F
  25. Oxy-vanadium-dravite, NaV3(V4Mg2)(Si6O18)(BO3)3(OH)3O: Crystal structure and redefinition of the “vanadium-dravite” tourmaline
  26. Lead-tellurium oxysalts from Otto Mountain near Baker, California: VIII. Fuettererite, Pb3Cu2+ 6 Te6+O6(OH)7Cl5, a new mineral with double spangolite-type sheets
  27. Lead-tellurium oxysalts from Otto Mountain near Baker, California: IX. Agaite, Pb3Cu2+Te6+O5(OH)2(CO3), a new mineral with CuO5-TeO6 polyhedral sheets
  28. Letter: Actinides in Geology, Energy, and the Environment. Evidence for nanocrystals of vorlanite, a rare uranate mineral, in the Nopal I low-temperature uranium deposit (Sierra Peña Blanca, Mexico)
Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2013.4194/html
Scroll to top button