Home Letter. The crystal structure of bartelkeite, with a revised chemical formula, PbFeGeVI(Ge2IVO7) (OH)2·H2O, isotypic with high-pressure P21/m lawsonite
Article
Licensed
Unlicensed Requires Authentication

Letter. The crystal structure of bartelkeite, with a revised chemical formula, PbFeGeVI(Ge2IVO7) (OH)2·H2O, isotypic with high-pressure P21/m lawsonite

  • Marcus J. Origlieri , Hexiong Yang EMAIL logo , Robert T. Downs , Esther S. Posner , Kenneth J. Domanik and William W. Pinch
Published/Copyright: April 2, 2015
Become an author with De Gruyter Brill

Abstract

Bartelkeite from Tsumeb, Namibia, was originally described by Keller et al. (1981) with the chemical formula PbFeGe3O8. By means of electron microprobe analysis, single-crystal X-ray diffraction, and Raman spectroscopy, we examined this mineral from the type locality. Our results show that bartelkeite is monoclinic with space group P21/m, unit-cell parameters a = 5.8279(2), b = 13.6150(4), c = 6.3097(2) Å, β = 127.314(2)°, and a revised ideal chemical formula PbFeGeVIGe2IVO7(OH)2·H2O (Z = 2). Most remarkably, bartelkeite is isostructural with the high-pressure P21/m phase of lawsonite, CaAl2Si2O7(OH)·H2O, which is only stable above 8.6 GPa and a potential host for H2O in subducting slabs. Its structure consists of single chains of edge-sharing FeO6 and Ge1O6 octahedra parallel to the c-axis, cross-linked by Ge22O7 tetrahedral dimers. The average <Ge-O> bond lengths for the GeO6 and GeO4 polyhedra are 1.889 and 1.744 Å, respectively. The Pb atoms and H2O groups occupy large cavities within the framework. The hydrogen bonding scheme in bartelkeite is similar to that in lawsonite. Bartelkeite represents the first known mineral containing both 4- and 6-coordinated Ge atoms and may serve as an excellent analog for further exploration of the temperature-pressure-composition space of lawsonite.

Received: 2012-6-19
Accepted: 2012-7-15
Published Online: 2015-4-2
Published in Print: 2012-10-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. MSA Roebling medal lecture. Mineralogy, petrology, U-Pb geochronology, and geologic evolution of the Dabie-Sulu classic ultrahigh-pressure metamorphic terrane, East-Central China
  2. Brittle-ductile microfabrics in naturally deformed zircon: Deformation mechanisms and consequences for U-Pb dating
  3. In situ hot-stage AFM study of the dissolution of the barite (001) surface in water at 30–55 °C
  4. A multi-domain gem-grade Brazilian apatite
  5. High-temperature structural behaviors of anhydrous wadsleyite and forsterite
  6. Rates and mechanism of Y, REE, and Cr diffusion in garnet
  7. EPR discrimination of microcrystalline calcite geomaterials
  8. Crystal chemistry of Bi- and Mn-bearing vesuvianite from Långban, Sweden
  9. Cation ordering in Pb2+-bearing, Mn3+-rich pargasite from Långban, Sweden
  10. Long-term solid-phase fate of co-precipitated U(VI)-Fe(III) following biological iron reduction by Thermoanaerobacter
  11. The sulfur speciation in S-bearing minerals: New constraints by a combination of electron microprobe analysis and DFT calculations with special reference to sodalite-group minerals
  12. Simultaneous sound velocity and density measurements of NaCl at high temperatures and pressures: Application as a primary pressure standard
  13. The temperature and compositional dependence of disordering in Fe-bearing dolomites
  14. Quantifying crystallization and devitrification of rhyolites by means of X-ray diffraction and electron microprobe analysis
  15. Reactions of strontium anorthite with H2O+CaCl2 fluids at 500 °C and high pressure: Kinetic information from in situ synchrotron-radiation XRF analyses of the fluid
  16. Solubility of xenotime in a 2 M HCl aqueous fluid from 1.2 to 2.6 GPa and 300 to 500 °C
  17. Elastic and anelastic anomalies due to spin-state transitions in orthorhombic perovskite from isoelectronic behavior of Co3+ and Fe2+
  18. Accurate determination of ferric iron in garnets by bulk Mössbauer spectroscopy and synchrotron micro-XANES
  19. Re-investigation of the crystal structure of enstatite under high-pressure conditions
  20. Second-order P6̄c2-P31c transition and structural crystallography of the cyclosilicate benitoite, BaTiSi3O9, at high pressure
  21. High-pressure structural studies of eskolaite by means of single-crystal X-ray diffraction
  22. Almandine: Lattice and non-lattice heat capacity behavior and standard thermodynamic properties
  23. Witzkeite: A new rare nitrate-sulphate mineral from a guano deposit at Punta de Lobos, Chile
  24. Krasheninnikovite, KNa2CaMg(SO4)3F, a new mineral from the Tolbachik volcano, Kamchatka, Russia
  25. Crystal structure of pseudojohannite, with a revised formula, Cu3(OH)2[(UO2)4O4(SO4)2](H2O)12
  26. Letter. A natural photoelectrochemical cell for water splitting: Implications for early Earth and Mars
  27. Letter. In situ observation of the breakdown of magnetite (Fe3O4) to Fe4O5 and hematite at high pressures and temperatures
  28. Letter. The crystal structure of bartelkeite, with a revised chemical formula, PbFeGeVI(Ge2IVO7) (OH)2·H2O, isotypic with high-pressure P21/m lawsonite
Downloaded on 22.10.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2012.4269/html
Scroll to top button