Home Physical Sciences High-pressure and high-temperature phase transitions in FeTiO3 and a new dense FeTi3O7 structure
Article
Licensed
Unlicensed Requires Authentication

High-pressure and high-temperature phase transitions in FeTiO3 and a new dense FeTi3O7 structure

  • Daisuke Nishio-Hamane EMAIL logo , Meiguang Zhang , Takehiko Yagi and Yanming Ma
Published/Copyright: April 2, 2015
Become an author with De Gruyter Brill

Abstract

High-pressure and high-temperature phase relations of FeTiO3 were investigated up to a pressure of about 74 GPa and 2600 K by synchrotron X-ray diffraction and analytical transmission electron microscopy. We conclude that FeTiO3 ilmenite transforms into the following phase(s) with increasing pressure: FeTiO3 (perovskite) at 20-30 GPa, Fe2TiO4 (Ca2TiO4-type) + TiO2 (OI-type) at 30-44 GPa and high temperature, FeO (wüstite) + TiO2 (OI) at 30-44 GPa and low temperature, and wüstite + FeTi3O7 (orthorhombic phase) above 44 GPa. Among these dense high-pressure polymorphs, FeTi3O7 is a new compound and its structure analysis was tried using particle swarm optimization simulation. This method successfully found a new high-density FeTi3O7 structure, and Rietveld refinement based on this model structure gave an excellent fit with the experimentally obtained X-ray diffraction pattern. This new high-density FeTi3O7 structure consists of polyhedra for monocapped FeO7 prisms, bicapped TiO8 prisms, and tricapped TiO9 prisms, which develop on the b-c plane and stack along the a axis. The dense compound assemblage found in FeTiO3 is promising for investigating the behavior of ABX3 compounds under ultrahigh pressures.

Received: 2011-8-15
Accepted: 2011-11-14
Published Online: 2015-4-2
Published in Print: 2012-4-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Veatchite: Structural relationships of the three polytypes
  2. Falsterite, Ca2MgMn2+2 (Fe2+0.5Fe3+0.5)4Zn4(PO4)8(OH)4(H2O)14, a new secondary phosphate mineral from the Palermo No. 1 pegmatite, North Groton, New Hampshire
  3. Pavlovskyite Ca8(SiO4)2(Si3O10): A new mineral of altered silicate-carbonate xenoliths from the two Russian type localities, Birkhin massif, Baikal Lake area and Upper Chegem caldera, North Caucasus
  4. Zaccagnaite-3R, a new Zn-Al hydrotalcite polytype from El Soplao cave (Cantabria, Spain)
  5. Incorporation of Si into TiO2 phases at high pressure
  6. TOF-SIMS and electron microprobe investigations of zoned magmatic orthopyroxenes: First results of trace and minor element analysis with implications for diffusion modeling
  7. Titanium in muscovite, biotite, and hornblende: Modeling, thermometry, and rutile activities of metapelites and amphibolites
  8. Polysaccharide-catalyzed nucleation and growth of disordered dolomite: A potential precursor of sedimentary dolomite
  9. High-pressure and high-temperature phase transitions in FeTiO3 and a new dense FeTi3O7 structure
  10. Compressibility and thermal expansion of hydrous ringwoodite with 2.5(3) wt% H2O
  11. Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron
  12. Electronic spin states of ferric and ferrous iron in the lower-mantle silicate perovskite
  13. Experimental VNIR reflectance spectroscopy of gypsum dehydration: Investigating the gypsum to bassanite transition
  14. Nature of rehydroxylation in dioctahedral 2:1 layer clay minerals
  15. Thermal behavior of afghanite, an ABABACAC member of the cancrinite group
  16. Experimental incorporation of Th into xenotime at middle to lower crustal P-T utilizing alkali-bearing fluids
  17. Sol-gel synthesis of nanocrystalline fayalite (Fe2SiO4)
  18. The heat capacity of fayalite at high temperatures
  19. Structural trends for celestite (SrSO4), anglesite (PbSO4), and barite (BaSO4): Confirmation of expected variations within the SO4 groups
  20. The dehydroxylation of serpentine group minerals
  21. Formation of nanoscale Th-coffinite
  22. Magnetic and low-temperature structural behavior of clinopyroxene-type FeGeO3: A neutron diffraction, magnetic susceptibility, and 57Fe Mössbauer study
  23. Crystal structure and thermal expansion of aragonite-group carbonates by single-crystal X-ray diffraction
  24. The lower-pressure stability of glaucophane in the presence of paragonite and quartz in the system Na2O-MgO-Al2O3-SiO2-H2O
  25. Coralloite, Mn2+Mn23+(AsO4)2(OH)2·4H2O, a new mixed valence Mn hydrate arsenate: Crystal structure and relationships with bermanite and whitmoreite mineral groups
  26. The crystal structure of metanatroautunite, Na[(UO2)(PO4)](H2O)3, from the Lake Boga Granite, Victoria, Australia
  27. Petedunnite (CaZnSi2O6): Stability and phase relations in the system CaO-ZnO-SiO2
  28. Revision of the crystal structure and chemical formula of weeksite, K2(UO2)2(Si5O13)·4H2O
  29. Electron backscatter diffraction (EBSD) analyses of phyllosilicates in petrographic thin sections
Downloaded on 29.12.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2012.3973/html
Scroll to top button