Home Physical Sciences TOF-SIMS and electron microprobe investigations of zoned magmatic orthopyroxenes: First results of trace and minor element analysis with implications for diffusion modeling
Article
Licensed
Unlicensed Requires Authentication

TOF-SIMS and electron microprobe investigations of zoned magmatic orthopyroxenes: First results of trace and minor element analysis with implications for diffusion modeling

  • Kate Saunders EMAIL logo , Stefan Rinnen , Jon Blundy , Ralf Dohmen , Stephan Klemme and Heinrich F. Arlinghaus
Published/Copyright: April 2, 2015
Become an author with De Gruyter Brill

Abstract

Zoned phenocrysts in volcanic rocks potentially provide an archive of magmatic processes. As a crystal grows and comes into contact with different melt batches, the chemical and textural signature of this journey is recorded within its crystal lattice. The timescale of some magmatic processes can be investigated through the relaxation of chemical gradients across crystal growth zones through the application of diffusion modeling techniques. One of the current limitations to diffusion modeling is the spatial and analytical resolution of the chemical profile that conventional techniques such as electron probe microanalyzer (EPMA), dynamic secondary ion mass spectrometry (SIMS), and laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) can achieve. Here, for the first time, we present time-of-flight (TOF) SIMS (TOF-SIMS) data for zoning of orthopyroxene crystals from the May 1982 eruption of Mount St. Helens volcano, U.S.A., and cross-calibrate these data between backscattered electron images and EPMA. TOF-SIMS has the advantage of being able to achieve micrometer to nanoscale spatial resolution of major elements as well as analyses of light elements, such as Li, and trace and minor elements (Na, K, and Ni) at concentrations that cannot be achieved by EPMA, provided that convolution (overlap) effects and polyatomic mass inferences are carefully considered. With TOF-SIMS analyses we identified zoning of Li on a spatial scale (ca. 5-10 μm) that would be inaccessible to most other conventional analytical techniques. Preliminary results indicate that Li, a fast-diffusing element, may be introduced to the crystals in the minutes, hours, or days prior to eruption and may provide insights into pre-eruptive magmatic processes. Thus, TOF-SIMS has the potential to be a powerful tool for obtaining minor and trace element profiles across compositional interfaces within crystals at high-spatial resolution.

Received: 2011-5-23
Accepted: 2011-12-6
Published Online: 2015-4-2
Published in Print: 2012-4-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Veatchite: Structural relationships of the three polytypes
  2. Falsterite, Ca2MgMn2+2 (Fe2+0.5Fe3+0.5)4Zn4(PO4)8(OH)4(H2O)14, a new secondary phosphate mineral from the Palermo No. 1 pegmatite, North Groton, New Hampshire
  3. Pavlovskyite Ca8(SiO4)2(Si3O10): A new mineral of altered silicate-carbonate xenoliths from the two Russian type localities, Birkhin massif, Baikal Lake area and Upper Chegem caldera, North Caucasus
  4. Zaccagnaite-3R, a new Zn-Al hydrotalcite polytype from El Soplao cave (Cantabria, Spain)
  5. Incorporation of Si into TiO2 phases at high pressure
  6. TOF-SIMS and electron microprobe investigations of zoned magmatic orthopyroxenes: First results of trace and minor element analysis with implications for diffusion modeling
  7. Titanium in muscovite, biotite, and hornblende: Modeling, thermometry, and rutile activities of metapelites and amphibolites
  8. Polysaccharide-catalyzed nucleation and growth of disordered dolomite: A potential precursor of sedimentary dolomite
  9. High-pressure and high-temperature phase transitions in FeTiO3 and a new dense FeTi3O7 structure
  10. Compressibility and thermal expansion of hydrous ringwoodite with 2.5(3) wt% H2O
  11. Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron
  12. Electronic spin states of ferric and ferrous iron in the lower-mantle silicate perovskite
  13. Experimental VNIR reflectance spectroscopy of gypsum dehydration: Investigating the gypsum to bassanite transition
  14. Nature of rehydroxylation in dioctahedral 2:1 layer clay minerals
  15. Thermal behavior of afghanite, an ABABACAC member of the cancrinite group
  16. Experimental incorporation of Th into xenotime at middle to lower crustal P-T utilizing alkali-bearing fluids
  17. Sol-gel synthesis of nanocrystalline fayalite (Fe2SiO4)
  18. The heat capacity of fayalite at high temperatures
  19. Structural trends for celestite (SrSO4), anglesite (PbSO4), and barite (BaSO4): Confirmation of expected variations within the SO4 groups
  20. The dehydroxylation of serpentine group minerals
  21. Formation of nanoscale Th-coffinite
  22. Magnetic and low-temperature structural behavior of clinopyroxene-type FeGeO3: A neutron diffraction, magnetic susceptibility, and 57Fe Mössbauer study
  23. Crystal structure and thermal expansion of aragonite-group carbonates by single-crystal X-ray diffraction
  24. The lower-pressure stability of glaucophane in the presence of paragonite and quartz in the system Na2O-MgO-Al2O3-SiO2-H2O
  25. Coralloite, Mn2+Mn23+(AsO4)2(OH)2·4H2O, a new mixed valence Mn hydrate arsenate: Crystal structure and relationships with bermanite and whitmoreite mineral groups
  26. The crystal structure of metanatroautunite, Na[(UO2)(PO4)](H2O)3, from the Lake Boga Granite, Victoria, Australia
  27. Petedunnite (CaZnSi2O6): Stability and phase relations in the system CaO-ZnO-SiO2
  28. Revision of the crystal structure and chemical formula of weeksite, K2(UO2)2(Si5O13)·4H2O
  29. Electron backscatter diffraction (EBSD) analyses of phyllosilicates in petrographic thin sections
Downloaded on 29.12.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2012.3893/html
Scroll to top button