Startseite Implications of ferrous and ferric iron in antigorite
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Implications of ferrous and ferric iron in antigorite

  • Bernard W. Evans , M. Darby Dyar EMAIL logo und Scott M. Kuehner
Veröffentlicht/Copyright: 2. April 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Microprobe analyses of antigorite show that (Al+Cr) and inferred Fe3+ correlate inversely with Si apfu in a Tschermaks substitution. This observation suggests that the uptake of Fe3+ is not simply related to fO₂. For Si = 1.95 apfu estimated Fe3+ = 0.032 apfu (or 0.95 wt% Fe2O3). Such estimates of Fe3+ require high analytical accuracy and precision, and assume a fixed polysomatic formula (e.g., m = 17) and freedom from interlayer sheet-silicate impurities. In many cases the estimates appear to be high. An alternative measure of Fe3+ is provided by the partitioning of total Fe and Mg between antigorite and olivine in well-equilibrated natural antigorite-olivine-magnetite parageneses. Extrapolation of Nernst and Roozeboom partition plots to Fe-free olivine permits an estimate of the Fe3+ content of the average antigorite in this paragenesis, namely 0.42 or 0.64 wt% Fe2O3.

The partition estimates are in good agreement with the results of Mössbauer spectroscopy performed here on 14 antigorites from metaperidotites, together with four from the literature. These spectra reveal a range of 0.16 to 1.94 in wt% Fe2O3 in metaperidotite antigorite, with an average of 0.83. In two olivine-bearing rocks, antigorite has Fe3+/ΣFe ratios of 0.13 and 0.15, which corresponds to wt% Fe2O3 = 0.47 and 0.54, respectively. Larger amounts of Fe2O3 occur in some, but not all, vein antigorites. The prograde formation of antigorite in serpentinite from lizardite is accompanied by loss of some cronstedtite component and the precipitation of additional magnetite.

The Roozeboom Mg/Fe partition plot is concave down rather than up; in other words the partition coefficient KD is a function of the XMg of olivine. This behavior has been found in other olivinemineral pairs. It can be interpreted to reflect strongly non-ideal solution behavior of MgFe-olivine at low temperatures, viz. WG ≈ 8.5 kJ assuming a symmetrical solution. MgFe-brucite appears to be similarly non-ideal.

Received: 2011-6-28
Accepted: 2011-10-4
Published Online: 2015-4-2
Published in Print: 2012-1-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Boron in natural type IIb blue diamonds: Chemical and spectroscopic measurements
  2. Mejillonesite, a new acid sodium, magnesium phosphate mineral, from Mejillones, Antofagasta, Chile
  3. Silician magnetite from the Dales Gorge Member of the Brockman Iron Formation, Hamersley Group, Western Australia
  4. The mechanism of thermal decomposition of dolomite: New insights from 2D-XRD and TEM analyses
  5. A revised diamond-graphite transition curve
  6. Insights into the crystal and aggregate structure of Fe3+ oxide/silica co-precipitates
  7. Compositional dependence of alkali diffusivity in silicate melts: Mixed alkali effect and pseudo-alkali effect
  8. Kinetics of evaporation of forsterite in vacuum
  9. X-ray absorption near edge structure (XANES) study of the speciation of uranium and thorium in Al-rich CaSiO3 perovskite
  10. Rehydration of dehydrated-dehydroxylated smectite in a low water vapor environment
  11. Effect of high pressure on the crystal structure and electronic properties of magnetite below 25 GPa
  12. OH group behavior and pressure-induced amorphization of antigorite examined under high pressure and temperature using synchrotron infrared spectroscopy
  13. Single-crystal Raman spectroscopy of natural paulmooreite Pb2As2O5 in comparison with the synthesized analog
  14. The dissolution of laumontite in acidic aqueous solutions: A controlled-temperature in situ atomic force microscopy study
  15. Crystal structure of CaRhO3 polymorph: High-pressure intermediate phase between perovskite and post-perovskite
  16. Oxide melt solution calorimetry of Fe2+-bearing oxides and application to the magnetite–maghemite (Fe3O4–Fe8/3O4) system
  17. Static compression of (Mg0.83,Fe0.17)O and (Mg0.75,Fe0.25)O ferropericlase up to 58 GPa at 300, 700, and 1100 K
  18. Implications of ferrous and ferric iron in antigorite
  19. Markascherite, Cu3(MoO4)(OH)4, a new mineral species polymorphic with szenicsite, from Copper Creek, Pinal County, Arizona, U.S.A.
  20. Natural hydrous amorphous silica: Quantitation of network speciation and hydroxyl content by 29Si MAS NMR and vibrational spectroscopy
  21. Lead-tellurium oxysalts from Otto Mountain near Baker, California: VII. Chromschieffelinite, Pb10Te6O20(OH)14(CrO4)(H2O)5, the chromate analog of schieffelinite
  22. Experimental growth of diopside + merwinite reaction rims: The effect of water on microstructure development
  23. Thermodynamic model for growth of reaction rims with lamellar microstructure
  24. The high-pressure behavior of micas: Vibrational spectra of muscovite, biotite, and phlogopite to 30 GPa
  25. Critical evaluation of the revised akdalaite model for ferrihydrite—Discussion
  26. Critical evaluation of the revised akdalaite model for ferrihydrite—Reply
Heruntergeladen am 21.10.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am.2012.3926/html
Button zum nach oben scrollen