Abstract
Structural characteristics of Fe3+ oxide/silica co-precipitates were investigated. The association between these materials is relevant to practically all natural aqueous systems due to the prevalence of iron and silicon in the Earth’s crust. Crystallographic information is very difficult to obtain from these precipitates due to the nanocrystalline nature of ferrihydrite and the amorphous structure of precipitated silica. Several previously undetermined key insights were gained into the structure of iron oxide/silica co-precipitates through this examination. The distribution of iron and silicon throughout co-precipitate particles is illustrated along with the influence of their association. Evidence to the governing factor behind differences in apparent crystallinity is also presented. This information culminates in the formulation of a precipitation pathway, displaying the formation of the co-precipitates.
© 2015 by Walter de Gruyter Berlin/Boston
Artikel in diesem Heft
- Boron in natural type IIb blue diamonds: Chemical and spectroscopic measurements
- Mejillonesite, a new acid sodium, magnesium phosphate mineral, from Mejillones, Antofagasta, Chile
- Silician magnetite from the Dales Gorge Member of the Brockman Iron Formation, Hamersley Group, Western Australia
- The mechanism of thermal decomposition of dolomite: New insights from 2D-XRD and TEM analyses
- A revised diamond-graphite transition curve
- Insights into the crystal and aggregate structure of Fe3+ oxide/silica co-precipitates
- Compositional dependence of alkali diffusivity in silicate melts: Mixed alkali effect and pseudo-alkali effect
- Kinetics of evaporation of forsterite in vacuum
- X-ray absorption near edge structure (XANES) study of the speciation of uranium and thorium in Al-rich CaSiO3 perovskite
- Rehydration of dehydrated-dehydroxylated smectite in a low water vapor environment
- Effect of high pressure on the crystal structure and electronic properties of magnetite below 25 GPa
- OH group behavior and pressure-induced amorphization of antigorite examined under high pressure and temperature using synchrotron infrared spectroscopy
- Single-crystal Raman spectroscopy of natural paulmooreite Pb2As2O5 in comparison with the synthesized analog
- The dissolution of laumontite in acidic aqueous solutions: A controlled-temperature in situ atomic force microscopy study
- Crystal structure of CaRhO3 polymorph: High-pressure intermediate phase between perovskite and post-perovskite
- Oxide melt solution calorimetry of Fe2+-bearing oxides and application to the magnetite–maghemite (Fe3O4–Fe8/3O4) system
- Static compression of (Mg0.83,Fe0.17)O and (Mg0.75,Fe0.25)O ferropericlase up to 58 GPa at 300, 700, and 1100 K
- Implications of ferrous and ferric iron in antigorite
- Markascherite, Cu3(MoO4)(OH)4, a new mineral species polymorphic with szenicsite, from Copper Creek, Pinal County, Arizona, U.S.A.
- Natural hydrous amorphous silica: Quantitation of network speciation and hydroxyl content by 29Si MAS NMR and vibrational spectroscopy
- Lead-tellurium oxysalts from Otto Mountain near Baker, California: VII. Chromschieffelinite, Pb10Te6O20(OH)14(CrO4)(H2O)5, the chromate analog of schieffelinite
- Experimental growth of diopside + merwinite reaction rims: The effect of water on microstructure development
- Thermodynamic model for growth of reaction rims with lamellar microstructure
- The high-pressure behavior of micas: Vibrational spectra of muscovite, biotite, and phlogopite to 30 GPa
- Critical evaluation of the revised akdalaite model for ferrihydrite—Discussion
- Critical evaluation of the revised akdalaite model for ferrihydrite—Reply
Artikel in diesem Heft
- Boron in natural type IIb blue diamonds: Chemical and spectroscopic measurements
- Mejillonesite, a new acid sodium, magnesium phosphate mineral, from Mejillones, Antofagasta, Chile
- Silician magnetite from the Dales Gorge Member of the Brockman Iron Formation, Hamersley Group, Western Australia
- The mechanism of thermal decomposition of dolomite: New insights from 2D-XRD and TEM analyses
- A revised diamond-graphite transition curve
- Insights into the crystal and aggregate structure of Fe3+ oxide/silica co-precipitates
- Compositional dependence of alkali diffusivity in silicate melts: Mixed alkali effect and pseudo-alkali effect
- Kinetics of evaporation of forsterite in vacuum
- X-ray absorption near edge structure (XANES) study of the speciation of uranium and thorium in Al-rich CaSiO3 perovskite
- Rehydration of dehydrated-dehydroxylated smectite in a low water vapor environment
- Effect of high pressure on the crystal structure and electronic properties of magnetite below 25 GPa
- OH group behavior and pressure-induced amorphization of antigorite examined under high pressure and temperature using synchrotron infrared spectroscopy
- Single-crystal Raman spectroscopy of natural paulmooreite Pb2As2O5 in comparison with the synthesized analog
- The dissolution of laumontite in acidic aqueous solutions: A controlled-temperature in situ atomic force microscopy study
- Crystal structure of CaRhO3 polymorph: High-pressure intermediate phase between perovskite and post-perovskite
- Oxide melt solution calorimetry of Fe2+-bearing oxides and application to the magnetite–maghemite (Fe3O4–Fe8/3O4) system
- Static compression of (Mg0.83,Fe0.17)O and (Mg0.75,Fe0.25)O ferropericlase up to 58 GPa at 300, 700, and 1100 K
- Implications of ferrous and ferric iron in antigorite
- Markascherite, Cu3(MoO4)(OH)4, a new mineral species polymorphic with szenicsite, from Copper Creek, Pinal County, Arizona, U.S.A.
- Natural hydrous amorphous silica: Quantitation of network speciation and hydroxyl content by 29Si MAS NMR and vibrational spectroscopy
- Lead-tellurium oxysalts from Otto Mountain near Baker, California: VII. Chromschieffelinite, Pb10Te6O20(OH)14(CrO4)(H2O)5, the chromate analog of schieffelinite
- Experimental growth of diopside + merwinite reaction rims: The effect of water on microstructure development
- Thermodynamic model for growth of reaction rims with lamellar microstructure
- The high-pressure behavior of micas: Vibrational spectra of muscovite, biotite, and phlogopite to 30 GPa
- Critical evaluation of the revised akdalaite model for ferrihydrite—Discussion
- Critical evaluation of the revised akdalaite model for ferrihydrite—Reply