Experimental growth of diopside + merwinite reaction rims: The effect of water on microstructure development
Abstract
The growth rate and internal organization of bimineralic diopside (CaMgSi2O6)-merwinite (Ca3MgSi2O8) reaction rims produced by a solid-state reaction between monticellite (CaMgSiO4) and wollastonite (CaSiO3) single crystals was determined at 900 °C, 1.2 GPa, and run durations from 5 to 65 h using conventional piston-cylinder equipment. Overall reaction rim thickness ranges from 3.8 to 20.9 μm and increases with the square root of time, indicating that rim growth is diffusion controlled. Symmetrical makeup of the internal microstructure implies that rims grow from the original interface toward both reactants at identical rates, indicating that diffusion of MgO across the rim controls overall growth, with an effective bulk diffusion coefficient of DDi Mwbu+lk,MgO = 10−16.3 ± 0.2 m2/s. At the initial stages, a “lamellar type” microstructure of alternating palisade-shaped diopside and merwinite grains elongated normal to the reaction front is generated, which gradually transforms into a “segregated multilayer type” microstructure with almost perfectly monomineralic Mw|Di|Mw layers oriented parallel to the reaction fronts at long run durations. This is due to changes in relative component mobilities. Whereas the “lamellar” microstructure develops when MgO is substantially more mobile than the other components, formation of the “segregated multilayer” microstructure requires additional mobility of at least one of the other components, CaO or SiO2. We assume that a significant change in relative component mobilities is caused by continuous entrance of minute amounts of water from the piston-cylinder solid pressure medium through the capsule walls, as revealed by the presence of OH-defects in a reactant after the runs, and supported by water-containing powder experiments that only produce monomineralic Mw|Di|Mw layers. Traces of water have a major influence on relative component mobilities, internal rim organization, and the microstructural development of reaction zones.
© 2015 by Walter de Gruyter Berlin/Boston
Artikel in diesem Heft
- Boron in natural type IIb blue diamonds: Chemical and spectroscopic measurements
- Mejillonesite, a new acid sodium, magnesium phosphate mineral, from Mejillones, Antofagasta, Chile
- Silician magnetite from the Dales Gorge Member of the Brockman Iron Formation, Hamersley Group, Western Australia
- The mechanism of thermal decomposition of dolomite: New insights from 2D-XRD and TEM analyses
- A revised diamond-graphite transition curve
- Insights into the crystal and aggregate structure of Fe3+ oxide/silica co-precipitates
- Compositional dependence of alkali diffusivity in silicate melts: Mixed alkali effect and pseudo-alkali effect
- Kinetics of evaporation of forsterite in vacuum
- X-ray absorption near edge structure (XANES) study of the speciation of uranium and thorium in Al-rich CaSiO3 perovskite
- Rehydration of dehydrated-dehydroxylated smectite in a low water vapor environment
- Effect of high pressure on the crystal structure and electronic properties of magnetite below 25 GPa
- OH group behavior and pressure-induced amorphization of antigorite examined under high pressure and temperature using synchrotron infrared spectroscopy
- Single-crystal Raman spectroscopy of natural paulmooreite Pb2As2O5 in comparison with the synthesized analog
- The dissolution of laumontite in acidic aqueous solutions: A controlled-temperature in situ atomic force microscopy study
- Crystal structure of CaRhO3 polymorph: High-pressure intermediate phase between perovskite and post-perovskite
- Oxide melt solution calorimetry of Fe2+-bearing oxides and application to the magnetite–maghemite (Fe3O4–Fe8/3O4) system
- Static compression of (Mg0.83,Fe0.17)O and (Mg0.75,Fe0.25)O ferropericlase up to 58 GPa at 300, 700, and 1100 K
- Implications of ferrous and ferric iron in antigorite
- Markascherite, Cu3(MoO4)(OH)4, a new mineral species polymorphic with szenicsite, from Copper Creek, Pinal County, Arizona, U.S.A.
- Natural hydrous amorphous silica: Quantitation of network speciation and hydroxyl content by 29Si MAS NMR and vibrational spectroscopy
- Lead-tellurium oxysalts from Otto Mountain near Baker, California: VII. Chromschieffelinite, Pb10Te6O20(OH)14(CrO4)(H2O)5, the chromate analog of schieffelinite
- Experimental growth of diopside + merwinite reaction rims: The effect of water on microstructure development
- Thermodynamic model for growth of reaction rims with lamellar microstructure
- The high-pressure behavior of micas: Vibrational spectra of muscovite, biotite, and phlogopite to 30 GPa
- Critical evaluation of the revised akdalaite model for ferrihydrite—Discussion
- Critical evaluation of the revised akdalaite model for ferrihydrite—Reply
Artikel in diesem Heft
- Boron in natural type IIb blue diamonds: Chemical and spectroscopic measurements
- Mejillonesite, a new acid sodium, magnesium phosphate mineral, from Mejillones, Antofagasta, Chile
- Silician magnetite from the Dales Gorge Member of the Brockman Iron Formation, Hamersley Group, Western Australia
- The mechanism of thermal decomposition of dolomite: New insights from 2D-XRD and TEM analyses
- A revised diamond-graphite transition curve
- Insights into the crystal and aggregate structure of Fe3+ oxide/silica co-precipitates
- Compositional dependence of alkali diffusivity in silicate melts: Mixed alkali effect and pseudo-alkali effect
- Kinetics of evaporation of forsterite in vacuum
- X-ray absorption near edge structure (XANES) study of the speciation of uranium and thorium in Al-rich CaSiO3 perovskite
- Rehydration of dehydrated-dehydroxylated smectite in a low water vapor environment
- Effect of high pressure on the crystal structure and electronic properties of magnetite below 25 GPa
- OH group behavior and pressure-induced amorphization of antigorite examined under high pressure and temperature using synchrotron infrared spectroscopy
- Single-crystal Raman spectroscopy of natural paulmooreite Pb2As2O5 in comparison with the synthesized analog
- The dissolution of laumontite in acidic aqueous solutions: A controlled-temperature in situ atomic force microscopy study
- Crystal structure of CaRhO3 polymorph: High-pressure intermediate phase between perovskite and post-perovskite
- Oxide melt solution calorimetry of Fe2+-bearing oxides and application to the magnetite–maghemite (Fe3O4–Fe8/3O4) system
- Static compression of (Mg0.83,Fe0.17)O and (Mg0.75,Fe0.25)O ferropericlase up to 58 GPa at 300, 700, and 1100 K
- Implications of ferrous and ferric iron in antigorite
- Markascherite, Cu3(MoO4)(OH)4, a new mineral species polymorphic with szenicsite, from Copper Creek, Pinal County, Arizona, U.S.A.
- Natural hydrous amorphous silica: Quantitation of network speciation and hydroxyl content by 29Si MAS NMR and vibrational spectroscopy
- Lead-tellurium oxysalts from Otto Mountain near Baker, California: VII. Chromschieffelinite, Pb10Te6O20(OH)14(CrO4)(H2O)5, the chromate analog of schieffelinite
- Experimental growth of diopside + merwinite reaction rims: The effect of water on microstructure development
- Thermodynamic model for growth of reaction rims with lamellar microstructure
- The high-pressure behavior of micas: Vibrational spectra of muscovite, biotite, and phlogopite to 30 GPa
- Critical evaluation of the revised akdalaite model for ferrihydrite—Discussion
- Critical evaluation of the revised akdalaite model for ferrihydrite—Reply