Abstract
The transition from diamond to graphite is a key equilibrium for interpreting ultrahigh-pressure metamorphic rocks. Despite widespread interest, there remain significant systematic differences between the best available experimental determinations of P and T (Kennedy and Kennedy 1976) and numerous thermodynamic calculations of the transition. At temperatures below 1400 K, calculated equilibrium pressures are lower than extrapolations of the experiments by as much as 5 kbar. At 3000 K, calculated pressures vary from more than 8 kbar above to almost 20 kbar below the position of the extrapolated transition. A revised curve based on a critical review of the experimental and thermodynamic data is consistent with expanded experimental brackets and the preferred calorimetric data. It is steeper than the transition proposed by Kennedy and Kennedy (1976) and previous calculations and passes through 16.2 kbar, 298 K; 33.9 kbar, 1000 K; 63.5 kbar, 2000 K; and 98.4 kbar, 3000 K.
The revised curve implies that the minimum pressure for formation of diamond-bearing crustal rocks is 3-4 kbar less than implied by extrapolation of the experiments. Because the revised transition is steeper than most previous calculations, the triple point among graphite, diamond, and liquid carbon may be as much as 40 kbar higher than previously estimated.
© 2015 by Walter de Gruyter Berlin/Boston
Artikel in diesem Heft
- Boron in natural type IIb blue diamonds: Chemical and spectroscopic measurements
- Mejillonesite, a new acid sodium, magnesium phosphate mineral, from Mejillones, Antofagasta, Chile
- Silician magnetite from the Dales Gorge Member of the Brockman Iron Formation, Hamersley Group, Western Australia
- The mechanism of thermal decomposition of dolomite: New insights from 2D-XRD and TEM analyses
- A revised diamond-graphite transition curve
- Insights into the crystal and aggregate structure of Fe3+ oxide/silica co-precipitates
- Compositional dependence of alkali diffusivity in silicate melts: Mixed alkali effect and pseudo-alkali effect
- Kinetics of evaporation of forsterite in vacuum
- X-ray absorption near edge structure (XANES) study of the speciation of uranium and thorium in Al-rich CaSiO3 perovskite
- Rehydration of dehydrated-dehydroxylated smectite in a low water vapor environment
- Effect of high pressure on the crystal structure and electronic properties of magnetite below 25 GPa
- OH group behavior and pressure-induced amorphization of antigorite examined under high pressure and temperature using synchrotron infrared spectroscopy
- Single-crystal Raman spectroscopy of natural paulmooreite Pb2As2O5 in comparison with the synthesized analog
- The dissolution of laumontite in acidic aqueous solutions: A controlled-temperature in situ atomic force microscopy study
- Crystal structure of CaRhO3 polymorph: High-pressure intermediate phase between perovskite and post-perovskite
- Oxide melt solution calorimetry of Fe2+-bearing oxides and application to the magnetite–maghemite (Fe3O4–Fe8/3O4) system
- Static compression of (Mg0.83,Fe0.17)O and (Mg0.75,Fe0.25)O ferropericlase up to 58 GPa at 300, 700, and 1100 K
- Implications of ferrous and ferric iron in antigorite
- Markascherite, Cu3(MoO4)(OH)4, a new mineral species polymorphic with szenicsite, from Copper Creek, Pinal County, Arizona, U.S.A.
- Natural hydrous amorphous silica: Quantitation of network speciation and hydroxyl content by 29Si MAS NMR and vibrational spectroscopy
- Lead-tellurium oxysalts from Otto Mountain near Baker, California: VII. Chromschieffelinite, Pb10Te6O20(OH)14(CrO4)(H2O)5, the chromate analog of schieffelinite
- Experimental growth of diopside + merwinite reaction rims: The effect of water on microstructure development
- Thermodynamic model for growth of reaction rims with lamellar microstructure
- The high-pressure behavior of micas: Vibrational spectra of muscovite, biotite, and phlogopite to 30 GPa
- Critical evaluation of the revised akdalaite model for ferrihydrite—Discussion
- Critical evaluation of the revised akdalaite model for ferrihydrite—Reply
Artikel in diesem Heft
- Boron in natural type IIb blue diamonds: Chemical and spectroscopic measurements
- Mejillonesite, a new acid sodium, magnesium phosphate mineral, from Mejillones, Antofagasta, Chile
- Silician magnetite from the Dales Gorge Member of the Brockman Iron Formation, Hamersley Group, Western Australia
- The mechanism of thermal decomposition of dolomite: New insights from 2D-XRD and TEM analyses
- A revised diamond-graphite transition curve
- Insights into the crystal and aggregate structure of Fe3+ oxide/silica co-precipitates
- Compositional dependence of alkali diffusivity in silicate melts: Mixed alkali effect and pseudo-alkali effect
- Kinetics of evaporation of forsterite in vacuum
- X-ray absorption near edge structure (XANES) study of the speciation of uranium and thorium in Al-rich CaSiO3 perovskite
- Rehydration of dehydrated-dehydroxylated smectite in a low water vapor environment
- Effect of high pressure on the crystal structure and electronic properties of magnetite below 25 GPa
- OH group behavior and pressure-induced amorphization of antigorite examined under high pressure and temperature using synchrotron infrared spectroscopy
- Single-crystal Raman spectroscopy of natural paulmooreite Pb2As2O5 in comparison with the synthesized analog
- The dissolution of laumontite in acidic aqueous solutions: A controlled-temperature in situ atomic force microscopy study
- Crystal structure of CaRhO3 polymorph: High-pressure intermediate phase between perovskite and post-perovskite
- Oxide melt solution calorimetry of Fe2+-bearing oxides and application to the magnetite–maghemite (Fe3O4–Fe8/3O4) system
- Static compression of (Mg0.83,Fe0.17)O and (Mg0.75,Fe0.25)O ferropericlase up to 58 GPa at 300, 700, and 1100 K
- Implications of ferrous and ferric iron in antigorite
- Markascherite, Cu3(MoO4)(OH)4, a new mineral species polymorphic with szenicsite, from Copper Creek, Pinal County, Arizona, U.S.A.
- Natural hydrous amorphous silica: Quantitation of network speciation and hydroxyl content by 29Si MAS NMR and vibrational spectroscopy
- Lead-tellurium oxysalts from Otto Mountain near Baker, California: VII. Chromschieffelinite, Pb10Te6O20(OH)14(CrO4)(H2O)5, the chromate analog of schieffelinite
- Experimental growth of diopside + merwinite reaction rims: The effect of water on microstructure development
- Thermodynamic model for growth of reaction rims with lamellar microstructure
- The high-pressure behavior of micas: Vibrational spectra of muscovite, biotite, and phlogopite to 30 GPa
- Critical evaluation of the revised akdalaite model for ferrihydrite—Discussion
- Critical evaluation of the revised akdalaite model for ferrihydrite—Reply