Startseite Letter: Octahedral cation distribution in palygorskite
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Letter: Octahedral cation distribution in palygorskite

  • Georgios D. Chryssikos EMAIL logo , Vassilis Gionis , George H. Kacandes , Elizabeth T. Stathopoulou , Mercedes Suárez , Emilia García-Romero und Manuel Sánchez del Rio
Veröffentlicht/Copyright: 1. April 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The OH speciation of 18 palygorskite samples from various localities were evaluated by near infrared spectroscopy (NIR) and compared to the corresponding octahedral composition derived from independent, single-particle analytical electron microscopy (AEM). NIR gives evidence for dioctahedral-like (AlAlOH, AlFe3+OH, Fe3+Fe3+OH) and trioctahedral-like (Mg3OH) species. Therefore, palygorskite can be approximated by the formula yMg5 Si8O20(OH)2·(1 - y)[xMg2Fe2·(1 - x)Mg2Al2] Si8O20(OH)2, where x is the Fe content of the dioctahedral component, and y is the trioctahedral fraction. The values of x estimated from the NIR data are in excellent agreement with the Fe/(VIAl + Fe) ratio from AEM (R2 = 0.98, σ = 0.03), thus suggesting that all octahedral Al and Fe in palygorskite participate in M2M2OH (dioctahedral-like) arrangements. Furthermore, y values from AEM can be compared to NIR (R2 = 0.90 and σ = 0.05) after calibrating the relative intensity of the Mg3OH vs. (Al,Fe)2OH overtone bands using AEM data. The agreement between the spectroscopic and analytical data are excellent. The data show that Fe3+ for Al substitution varies continuously in the analyzed samples over a broad range (0 < x < 0.7), suggesting that fully ferric dioctahedral palygorskites (x = 1) may exist. On the other hand, the observed upper trioctahedral limit of y = 0.50 calls for the detailed structural comparison of Mg-rich palygorskite with sepiolite.

Received: 2008-8-1
Accepted: 2008-9-22
Published Online: 2015-4-1
Published in Print: 2009-1-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Amorphous materials: Properties, structure, and durability. The viscosity of hydrous NaAlSi3O8 and granitic melts: Configurational entropy models
  2. Alteration mineralogy and the effect of acid-leaching on the Pb-isotope systematics of ocean-island basalts
  3. Color origin and heat evidence of paleontological bones: Case study of blue and gray bones from San Josecito Cave, Mexico
  4. Coexistence of pyroxenes jadeite, omphacite, and diopside/hedenbergite in an albite-omphacite rock from a serpentinite mélange in the Kurosegawa Zone of Central Kyushu, Japan
  5. Amphibole equilibria in mantle rocks: Determining values of mantle aH2O and implications for mantle H2O contents
  6. Experimental fluoridation of nanocrystalline apatite
  7. Dehydration dynamics of barrerite: An in situ synchrotron XRPD study
  8. Structural features in Tutton’s salts K2[M2+(H2O)6](SO4)2, with M2+ = Mg, Fe, Co, Ni, Cu, and Zn
  9. Incorporation of water in iron-free ringwoodite: A first-principles study
  10. Temperature dependence of reflectance spectra and color values of hematite by in situ, high-temperature visible micro-spectroscopy
  11. Lattice thermal expansion of zircon-type LuPO4 and LuVO4: A comparative study
  12. Solubility of H2O and CO2 in ultrapotassic melts at 1200 and 1250 °C and pressure from 50 to 500 MPa
  13. Multi-analytical approach to solve the puzzle of an allanite-subgroup mineral from Kesebol, Västra Götaland, Sweden
  14. Dislocation modeling in calcium silicate perovskite based on the Peierls-Nabarro model
  15. Molecular dynamics insight into the cointercalation of hexadecyltrimethyl-ammonium and acetate ions into smectites
  16. Adding further complexity to the polybasite structure: The role of Ag in the B layer of the -M2a2b2c polytype
  17. Structural position of H2O molecules and hydrogen bonding in anomalous 11 Å tobermorite
  18. Electronic structures of siderite (FeCO3) and rhodochrosite (MnCO3): Oxygen K-edge spectroscopy and hybrid density functional theory
  19. Crystal growth and the fast reaction paradox: Mathematical resolution and implications for habit and compositional zoning
  20. The composition of KLB-1 peridotite
  21. Crystal chemistry of the magnetite-ulvöspinel series
  22. New insights into the crystal structure and crystal chemistry of the zeolite phillipsite
  23. Letter: Octahedral cation distribution in palygorskite
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am.2009.3063/html
Button zum nach oben scrollen