Abstract
High-pressure X-ray diffraction was carried out on a single crystal of gypsum compressed in a diamond anvil cell. The sample maintained its crystal structure up to 4.0 ± 0.1 GPa. The fit of pressure dependence of the unit-cell volume to the third-order Birch-Murnaghan equation yielded KT0 = 44(3) GPa and (∂KT/∂P)0 = 3.3(3), where KT0 and (∂KT/∂P)0 are the isothermal bulk modulus and its pressure derivative in ambient conditions. The axial compressibility values, fitting data collected up to 3.94 GPa, were β0aEoS = 6.1(1) and β0cEoS = 5.6(1) 10-3 GPa-1. The value of β0bEoS was 6.2(8) 10-3 GPa-1 fitting the data collected up to 2 GPa, due to non-linearity above this pressure; axial compressibility of gypsum is almost isotropic (β0a:β0b:β0c = 1:1:0.9). This behavior is partly unexpected for a layered mineral based on alternate layers of Ca- and S-polyhedral chains separated by interlayers occupied by water molecules. Above 4.0 GPa the compression curve of gypsum shows a discontinuity with a 2.5% contraction in volume. Structural refinements indicate that SO4 volume and average S-O bond distances remain almost unchanged from room pressure to 3.9 GPa [range 1.637(4)-1.66(9) Å3; 1.4733-1.48 Å]. The SO4 tetrahedron undergoes distortion: the smaller distance decreases from 1.4731(9) to 1.45(2) Å and the larger increases from 1.4735(9) to 1.51(2) Å. In contrast, the calcium polyhedra show expected high-pressure behavior, becoming more regular and decreasing in volume from 25.84(8) Å3 at ambient P to 24.7(1) Å3 at 3.9 GPa. The largest variations were observed in the interlayer region where the water molecules are located. Along the b axis, the two structural layers have very different compressibilities: the polyhedral layer is almost incompressible in the pressure range studied, whereas water layer compressibility is 9.7(3) 10-3 GPa-1, about twice that of the other two lattice parameters. At ambient conditions, water molecules form weak hydrogen bonds with the O atoms of Ca and S polyhedra. With increasing pressure, the weakest hydrogen bond becomes the strongest one: from 0.001 to 4 GPa, the distance changes from 2.806(1) to 2.73(2) Å for OW-H1···O2, and from 2.883(2) to 2.69(3) Å for OW-H2···O2. Structure refinements show that water remains in the structure when P increases. The observed distortion of sulfate tetrahedra explains the splitting of the ν1 sulfate stretching mode, and the various measured compressibilities of the two hydrogen bonds and the coalescence of the Raman stretching mode observed at pressures over 5 GPa.
© 2015 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Amorphous materials: Properties, structure, and durability: Atomic structure and transport properties of MgO-Al2O3 melts: A molecular dynamics simulation study
- Amorphous Materials: Properties, structure, and durability: Oxidation state of iron in hydrous phono-tephritic melts
- Amorphous materials: Properties, structure, and durability: Quantitative Raman spectroscopy: Speciation of Na-silicate glasses and melts
- Dissolution-reprecipitation of zircon at low-temperature, high-pressure conditions (Lanzo Massif, Italy)
- High-pressure behavior of gypsum: A single-crystal X-ray study
- Presence and zoning of hydrous components in leucite from the Alban Hills volcano, Rome, Italy
- Herderite from Mogok, Myanmar, and comparison with hydroxyl-herderite from Ehrenfriedersdorf, Germany
- Application of Raman spectroscopy to quantify trace water concentrations in glasses and garnets
- Neutron diffraction study of δ-AlOOD at high pressure and its implication for symmetrization of the hydrogen bond
- A simple predictive model for the thermal expansion of AlSi3 feldspars
- New data on PGE alloy minerals from a very old collection (probably 1890s), California
- High-pressure study on lead fluorapatite
- High-pressure Al-rich hexagonal phases—What are their kin?
- Leucite at high pressure: Elastic behavior, phase stability, and petrological implications
- Thermodynamic mixing properties of Rb-K feldspars
- Demicheleite, BiSBr, a new mineral from La Fossa crater, Vulcano, Aeolian Islands, Italy
- A lattice dynamical study of the aragonite and post-aragonite phases of calcium carbonate rock
- Water in natural olivine—determined by proton-proton scattering analysis
- Factors affecting heat transfer in natural SiO2 solids
- A solution model for high-temperature PbS-AgSbS2-AgBiS2 galena
- Incorporation of molybdate anion into β-FeOOH
- Disordering of Fe2+ over octahedrally coordinated sites of tourmaline
- Raman spectroscopy of CaIrO3 postperovskite up to 30 GPa
- The thermal behavior of richterite
- The crystal structure of kelyanite, (Hg2)6(SbO6)BrCl2
- Comparison of crystallographic orientations between living (Emiliania huxleyi and Gephyrocapsa oceanica) and fossil (Watznaueria barnesiae) coccoliths using electron microscopes
- Letter. Iron partitioning between perovskite and post-perovskite: A transmission electron microscope study
- Letter. An isosymmetric phase transition of orthopyroxene found by high-temperature X-ray diffraction
Articles in the same Issue
- Amorphous materials: Properties, structure, and durability: Atomic structure and transport properties of MgO-Al2O3 melts: A molecular dynamics simulation study
- Amorphous Materials: Properties, structure, and durability: Oxidation state of iron in hydrous phono-tephritic melts
- Amorphous materials: Properties, structure, and durability: Quantitative Raman spectroscopy: Speciation of Na-silicate glasses and melts
- Dissolution-reprecipitation of zircon at low-temperature, high-pressure conditions (Lanzo Massif, Italy)
- High-pressure behavior of gypsum: A single-crystal X-ray study
- Presence and zoning of hydrous components in leucite from the Alban Hills volcano, Rome, Italy
- Herderite from Mogok, Myanmar, and comparison with hydroxyl-herderite from Ehrenfriedersdorf, Germany
- Application of Raman spectroscopy to quantify trace water concentrations in glasses and garnets
- Neutron diffraction study of δ-AlOOD at high pressure and its implication for symmetrization of the hydrogen bond
- A simple predictive model for the thermal expansion of AlSi3 feldspars
- New data on PGE alloy minerals from a very old collection (probably 1890s), California
- High-pressure study on lead fluorapatite
- High-pressure Al-rich hexagonal phases—What are their kin?
- Leucite at high pressure: Elastic behavior, phase stability, and petrological implications
- Thermodynamic mixing properties of Rb-K feldspars
- Demicheleite, BiSBr, a new mineral from La Fossa crater, Vulcano, Aeolian Islands, Italy
- A lattice dynamical study of the aragonite and post-aragonite phases of calcium carbonate rock
- Water in natural olivine—determined by proton-proton scattering analysis
- Factors affecting heat transfer in natural SiO2 solids
- A solution model for high-temperature PbS-AgSbS2-AgBiS2 galena
- Incorporation of molybdate anion into β-FeOOH
- Disordering of Fe2+ over octahedrally coordinated sites of tourmaline
- Raman spectroscopy of CaIrO3 postperovskite up to 30 GPa
- The thermal behavior of richterite
- The crystal structure of kelyanite, (Hg2)6(SbO6)BrCl2
- Comparison of crystallographic orientations between living (Emiliania huxleyi and Gephyrocapsa oceanica) and fossil (Watznaueria barnesiae) coccoliths using electron microscopes
- Letter. Iron partitioning between perovskite and post-perovskite: A transmission electron microscope study
- Letter. An isosymmetric phase transition of orthopyroxene found by high-temperature X-ray diffraction