Abstract
A recent force field model is used in this paper to analyze, with a nano-scale simulation, the structural and the vibrational properties of a rock system under the application of various high pressures. Our results show that this model reproduces accurately the equilibrium structural properties for calcite, gives comparable results for aragonite with the observed data, and predicts the structural, elastic and vibrational properties of the post-aragonite phase.
In addition, we show that the transition from the aragonite to the post-aragonite phase appears at a transition pressure of 35.2 GPa. The longitudinal wave velocity increases rapidly by a factor of 1.71. In contrast the shear wave velocity increases very slowly up to the transition pressure, and thereafter increases rapidly, changing by 45% to 80 GPa. In addition, our calculations for the vibrational properties show that with the new potential model presented here, we observe a softening mode in the Γ-F direction. The phonon frequencies of the post-aragonite phase show more modes than for calcite and aragonite.
© 2015 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Amorphous materials: Properties, structure, and durability: Atomic structure and transport properties of MgO-Al2O3 melts: A molecular dynamics simulation study
- Amorphous Materials: Properties, structure, and durability: Oxidation state of iron in hydrous phono-tephritic melts
- Amorphous materials: Properties, structure, and durability: Quantitative Raman spectroscopy: Speciation of Na-silicate glasses and melts
- Dissolution-reprecipitation of zircon at low-temperature, high-pressure conditions (Lanzo Massif, Italy)
- High-pressure behavior of gypsum: A single-crystal X-ray study
- Presence and zoning of hydrous components in leucite from the Alban Hills volcano, Rome, Italy
- Herderite from Mogok, Myanmar, and comparison with hydroxyl-herderite from Ehrenfriedersdorf, Germany
- Application of Raman spectroscopy to quantify trace water concentrations in glasses and garnets
- Neutron diffraction study of δ-AlOOD at high pressure and its implication for symmetrization of the hydrogen bond
- A simple predictive model for the thermal expansion of AlSi3 feldspars
- New data on PGE alloy minerals from a very old collection (probably 1890s), California
- High-pressure study on lead fluorapatite
- High-pressure Al-rich hexagonal phases—What are their kin?
- Leucite at high pressure: Elastic behavior, phase stability, and petrological implications
- Thermodynamic mixing properties of Rb-K feldspars
- Demicheleite, BiSBr, a new mineral from La Fossa crater, Vulcano, Aeolian Islands, Italy
- A lattice dynamical study of the aragonite and post-aragonite phases of calcium carbonate rock
- Water in natural olivine—determined by proton-proton scattering analysis
- Factors affecting heat transfer in natural SiO2 solids
- A solution model for high-temperature PbS-AgSbS2-AgBiS2 galena
- Incorporation of molybdate anion into β-FeOOH
- Disordering of Fe2+ over octahedrally coordinated sites of tourmaline
- Raman spectroscopy of CaIrO3 postperovskite up to 30 GPa
- The thermal behavior of richterite
- The crystal structure of kelyanite, (Hg2)6(SbO6)BrCl2
- Comparison of crystallographic orientations between living (Emiliania huxleyi and Gephyrocapsa oceanica) and fossil (Watznaueria barnesiae) coccoliths using electron microscopes
- Letter. Iron partitioning between perovskite and post-perovskite: A transmission electron microscope study
- Letter. An isosymmetric phase transition of orthopyroxene found by high-temperature X-ray diffraction
Articles in the same Issue
- Amorphous materials: Properties, structure, and durability: Atomic structure and transport properties of MgO-Al2O3 melts: A molecular dynamics simulation study
- Amorphous Materials: Properties, structure, and durability: Oxidation state of iron in hydrous phono-tephritic melts
- Amorphous materials: Properties, structure, and durability: Quantitative Raman spectroscopy: Speciation of Na-silicate glasses and melts
- Dissolution-reprecipitation of zircon at low-temperature, high-pressure conditions (Lanzo Massif, Italy)
- High-pressure behavior of gypsum: A single-crystal X-ray study
- Presence and zoning of hydrous components in leucite from the Alban Hills volcano, Rome, Italy
- Herderite from Mogok, Myanmar, and comparison with hydroxyl-herderite from Ehrenfriedersdorf, Germany
- Application of Raman spectroscopy to quantify trace water concentrations in glasses and garnets
- Neutron diffraction study of δ-AlOOD at high pressure and its implication for symmetrization of the hydrogen bond
- A simple predictive model for the thermal expansion of AlSi3 feldspars
- New data on PGE alloy minerals from a very old collection (probably 1890s), California
- High-pressure study on lead fluorapatite
- High-pressure Al-rich hexagonal phases—What are their kin?
- Leucite at high pressure: Elastic behavior, phase stability, and petrological implications
- Thermodynamic mixing properties of Rb-K feldspars
- Demicheleite, BiSBr, a new mineral from La Fossa crater, Vulcano, Aeolian Islands, Italy
- A lattice dynamical study of the aragonite and post-aragonite phases of calcium carbonate rock
- Water in natural olivine—determined by proton-proton scattering analysis
- Factors affecting heat transfer in natural SiO2 solids
- A solution model for high-temperature PbS-AgSbS2-AgBiS2 galena
- Incorporation of molybdate anion into β-FeOOH
- Disordering of Fe2+ over octahedrally coordinated sites of tourmaline
- Raman spectroscopy of CaIrO3 postperovskite up to 30 GPa
- The thermal behavior of richterite
- The crystal structure of kelyanite, (Hg2)6(SbO6)BrCl2
- Comparison of crystallographic orientations between living (Emiliania huxleyi and Gephyrocapsa oceanica) and fossil (Watznaueria barnesiae) coccoliths using electron microscopes
- Letter. Iron partitioning between perovskite and post-perovskite: A transmission electron microscope study
- Letter. An isosymmetric phase transition of orthopyroxene found by high-temperature X-ray diffraction