Home Letter. Optical absorption spectra of ferropericlase to 84 GPa
Article
Licensed
Unlicensed Requires Authentication

Letter. Optical absorption spectra of ferropericlase to 84 GPa

  • Hans Keppler EMAIL logo , Innokenty Kantor and Leonid S. Dubrovinsky
Published/Copyright: April 1, 2015
Become an author with De Gruyter Brill

Abstract

Optical and near infrared absorption spectra of ferropericlase Mg0.88Fe0.12O have been measured to 84 GPa. Under ambient conditions, the spectrum shows two crystal field bands of high-spin Fe2+ at 8922 and 12 533 cm-1, which shift to higher frequencies with increasing pressure (dν/dP = 50.7 and 85.5 cm-1/GPa). Simultaneously, the intensity of the high-frequency band continuously decreases until it vanishes around 40 GPa, suggesting a quenching of the Jahn-Teller effect. Between 51 and 60 GPa, the absorption spectrum changes drastically. Two new bands appear at 60 GPa at 9728 and 14 592 cm-1 with frequency shifts at higher pressures of dν/dP = 23.8 and 21.0 cm-1/GPa, respectively. If the change in optical spectra between 51 and 60 GPa were interpreted as being due to spin-pairing, the crystal field parameters of low-spin Fe2+ at 60 GPa would be Δ = 10 546 cm-1 and B = 377 cm-1. This would imply that the main cause of spin-pairing is not the increase in crystal field splitting Δ, but the stronger covalency of the Fe-O bond as seen in the reduction of the Racah parameter B. Even at 84 GPa, ferropericlase is by no means opaque. In particular, the inferred spin-pairing transition between 51 and 60 GPa reduces radiative thermal conductivity only by about 15%. Spin-pairing in ferropericlase is therefore unlikely to have major consequences for the temperature distribution or the mode of convection in the lower mantle. The absorption edge of the high-pressure phase appears to be deeper in the UV than for the low-pressure phase, which could imply a reduced electrical (polaron) conductivity

Received: 2006-9-19
Accepted: 2006-10-17
Published Online: 2015-4-1
Published in Print: 2007-2-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Combined cathodoluminescence hyperspectral imaging and wavelength dispersive X-ray analysis of minerals
  2. Identification of cathodoluminescence activators in zoned alkali feldspars by hyperspectral imaging and electron-probe microanalysis
  3. Ionoluminescence of leucophanite
  4. Digital near-infrared (NIR) cathodoluminescence (CL) imaging and image processing
  5. Significance of aluminum phosphate-sulfate minerals associated with U unconformity-type deposits: The Athabasca basin, Canada
  6. Hardness, toughness, and modulus of some common metamorphic minerals
  7. Diffusion compensation for argon, hydrogen, lead, and strontium in minerals: Empirical relationships to crystal chemistry
  8. Elastic anomalies accompanying phase transitions in (Ca,Sr)TiO3 perovskites: Part I. Landau theory and a calibration for SrTiO3
  9. Elastic anomalies accompanying phase transitions in (Ca,Sr)TiO3 perovskites: Part II. Calibration for the effects of composition and pressur
  10. Elastic anomalies accompanying phase transitions in (Ca,Sr)TiO3 perovskites: Part III. Experimental investigation of polycrystalline samples
  11. Patterns in the compositions of oxysalt and sulfosalt minerals, and the paradoxical nature of quartz
  12. Effect of variable carbonate concentration on the solidus of mantle peridotite
  13. Time-resolved structural analysis of K- and Ba-exchange reactions with synthetic Na-birnessite using synchrotron X-ray diffraction
  14. Heat capacity of synthetic hydrous Mg-cordierite at low temperatures: Thermodynamic properties and the behavior of the H2O molecule in selected hydrous micro and nanoporous silicates
  15. Organic anions in layered double hydroxides: An experimental investigation of citrate hydrotalcite
  16. The 6H-SiC structure model: Further refinement from SCXRD data from a terrestrial moissanite
  17. Cobalt incorporation in mullite
  18. Thermal expansion between 480 and 940 °C of Cr-doped mullites derived from single-phase precursors
  19. Armbrusterite, K5Na6Mn3+Mn2+14[Si9O22]4(OH)10·4H2O, a new Mn hydrous heterophyllosilicate from the Khibiny alkaline massif, Kola Peninsula, Russia
  20. Letter. An empirical scaling model for averaging elastic properties including interfacial effects
  21. Letter. Optical absorption spectra of ferropericlase to 84 GPa
  22. Letter. The acoustic emissions signature of a pressure-induced polytypic transformation in chlorite
  23. Letter. A new high-pressure CaGe2O5 polymorph with 5- and 6-coordinated germanium
  24. Letter. Terrestrial analogs of martian jarosites: Major, minor element systematics and Na-K zoning in selected samples
Downloaded on 19.10.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2007.2454/html?lang=en
Scroll to top button