Startseite Vesuvianite as a key tool for the reconstruction of skarn formation conditions: An example from the Sauce Chico Complex, Argentina
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Vesuvianite as a key tool for the reconstruction of skarn formation conditions: An example from the Sauce Chico Complex, Argentina

  • Carlos A. Ballivián Justiniano ORCID logo EMAIL logo , Maricel G. Rodríguez , Taras L. Panikorovskii , Manuela E. Benítez , Clemente Recio , Cinthia P. Ramos , Mabel E. Lanfranchini und Florencia Di Salvo
Veröffentlicht/Copyright: 11. September 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the Sauce Chico Complex (Neoproterozoic–middle Cambrian age; Ventania System, Argentina), polymetamorphosed carbonate xenoliths known as the Loma Marcelo skarn are hosted in an Ediacaran peraluminous granite. The skarn has three types of vesuvianite, namely a, b, and c, with different colors, habits, and/or mineral assemblages. They were studied through petrographic microscopy, electron microprobe, inductively coupled mass and atomic emission spectrometry, Raman and Mössbauer spectroscopy, X-ray diffraction (powder and single-crystal), and fluid inclusion and stable isotope analyses. The average composition of the Loma Marcelo skarn vesuvianite is XCa19.00YAl9.57Fe1.292+Fe0.503+Mg1.17Ti0.48 Mn0.042+Σ13.05TZSi18O68WOH5.79F3.03Cl2.08O0.90Σ10.00 and corresponds to vesuvianite sensu stricto. Negligible amounts of XNa and TB were detected. Only Zn, Sr, Ce, La, and Sn are in concentrations >50 ppm. Through single-crystal XRD, the crystal structures of vesuvianite types a and b were refined in the P4/nnc space group (domains with P4/n symmetry are also present). Type c vesuvianite could not be satisfactorily refined; however, a P4/n symmetry is suspected. By comparing the Loma Marcelo skarn vesuvianite cell parameters with those of other vesuvianites worldwide, it becomes clear that symmetry does not influence these parameters. Based on Raman, single-crystal XRD data, and structural and chemical characteristics, formation temperatures of 550 °C (type b), 450 °C (type a), and 300–400 °C (type c) were estimated. The δ18OH2O values of ca. +11.9‰ calculated for these temperatures from δ18O values determined on vesuvianite concentrates and vesuvianite-water fractionation factors are compatible with a peraluminous granitic source. The Loma Marcelo skarn vesuvianite appears to reflect a retrograde process related to the crystallization of the Ediacaran granite hosting the metasomatized xenoliths. During a subsequent protracted Permian tectono-metamorphic event, biphasic secondary fluid inclusions were trapped at ca. 270–339 °C (ca. 250 MPa) from low salinity metamorphic fluids. Stable isotope determinations of H and O on vesuvianite concentrates indicate that the interaction with magmatic and metamorphic aqueous fluids promoted modifications in the 2H/1H ratios of the hydroxyl groups from the W sites, whereas the 18O/16O ratios of the silicate groups were not substantially modified. Notably, the vesuvianite structure is highly stable, remaining unchanged after formation. This stability suggests that vesuvianite-group minerals could serve as a reliable XRD-based thermometer.

Acknowledgments and Funding

We acknowledge the MX2 beamline staff of the Brazilian Synchrotron Light Laboratory (LNLS) for their assistance during the experiments. We acknowledge Ana María Sato for her financial support, Graciela M. Sosa and Nora N. Cesaretti for their help during the fluid inclusions microthermometry study, and Sebastián Oriolo and Fernando Colombo for their valuable insights. We also acknowledge the two anonymous reviewers for their constructive comments that helped to improve the original manuscript, as well as Adam Simon for the editorial handling. This study was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) of Argentina and by the LNLS through project MX2-20180504. Taras L. Panikorovskii thanks state assignment 122022400093-9. Mabel E. Lanfranchini thanks research grant UNLP N 716.

References Cited

Agilent Technologies. (2014) CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd.Suche in Google Scholar

Aksenov, S.M., Chukanov, N.V., Rusakov, V.S., Panikorovskii, T.L., Rastsvetaeva, R.K., Gainov, R.R., Vagizov, F.G., Lyssenko, K.A., and Belakovskiy, D.I. (2016) Towards a revisitation of vesuvianite-group nomenclature: The crystal structure of Ti-rich vesuvianite from Alchuri, Shigar Valley, Pakistan. Acta Crystallographica Section B, 72, 744–752, https://doi.org/10.1107/S2052520616010246.Suche in Google Scholar

Allen, F.M. and Burnham, C.W. (1992) A comprehensive structure-model for vesuvianite: Symmetry variation and crystal growth. Canadian Mineralogist, 30, 1–18.Suche in Google Scholar

Andreis, R.R., Iñíguez, A.M., Lluch, J.L., and Rodríguez, S. (1989) Paleozoic Ventania Basin, Sierras Australes, Buenos Aires Province. In G.A. Chebli and L.A. Spalletti, Eds., Cuencas Sedimentarias Argentinas (Serie Correlación Geológica 6), 265–298. Instituto Superior de Correlación Geológica (in Spanish).Suche in Google Scholar

Armbruster, T. and Gnos, E. (2000a) Tetrahedral vacancies and cation ordering in low-temperature Mn-bearing vesuvianites: Indication of a hydrogarnet-like substitution. American Mineralogist, 85, 570–577, https://doi.org/10.2138/am-2000-0419.Suche in Google Scholar

Armbruster, T. and Gnos, E. (2000b) ‘Rod’ polytypism in vesuvianite: Crystal structure of a low-temperature P4nc vesuvianite with pronounced octahedral cation ordering. Schweizerische Mineralogische und Petrographische Mitteilungen, 80, 109–116 (Swiss Bulletin of Mineralogy and Petrology).Suche in Google Scholar

Armbruster, T. and Gnos, E. (2000c) P4/n and P4nc long range ordering in low-temperature vesuvianites. American Mineralogist, 85, 563–569, https://doi.org/10.2138/am-2000-0418.Suche in Google Scholar

Armbruster, T., Gnos, E., Dixon, R., Gutzmer, J., Heiny, C., Dobelin, N., and Medenbach, O. (2002) Manganvesuvianite and tweddillite, two new Mn3+-silicate minerals from the Kalahari manganese fields, South Africa. Mineralogical Magazine, 66, 137–150, https://doi.org/10.1180/0026461026610018.Suche in Google Scholar

Bakker, R.J. (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194, 3–23, https://doi.org/10.1016/S0009-2541(02)00268-1.Suche in Google Scholar

Balassone, G., Talla, D., Beran, A., Mormone, A., Altomare, A., Moliterni, A., Mondillo, N., Saviano, M., and Petti, C. (2011) Vesuvianite from Somma-Vesuvius volcano (southern Italy): Chemical X-ray diffraction and single-crystal polarized FTIR investigations. Periodico di Mineralogia, 80, 369–384 (Journal of Mineralogy).Suche in Google Scholar

Balassone, G., Bellatreccia, F., Ottolini, L., Mormone, A., Petti, C., Ghiara, M.R., Altomare, A., Saviano, M., Rizzi, R., and D’orazio, L. (2016) Sodalite-group minerals from the Somma-Vesuvius Volcano (Naples, Italy): A combined EPMA, SIMS, and FTIR crystal-chemical study. Canadian Mineralogist, 54, 583–604, https://doi.org/10.3749/canmin.1500083.Suche in Google Scholar

Balassone, G., Panikorovskii, T.L., Pellino, A., Bazai, A.V., Bocharov, V.N., Goychuk, O.F., Avdontseva, E.Y., Yakovenchuk, V.N., Krivovichev, S.V., Petti, C., and others. (2024) Enricofrancoite, KNaCaSi4O10, a new Ca-K-Na silicate from Somma-Vesuvius volcano, southern Italy. Mineralogical Magazine, 88, 277–287, https://doi.org/10.1180/mgm.2024.9.Suche in Google Scholar

Ballivián Justiniano, C.A., Lanfranchini, M.E., Recio, C., de Barrio, R.E., Sato, A.M., Basei, M.A.S., Pimentel, M.M., Etcheverry, R.O., and Tassinari, C.C.G. (2017) Geology and petrogenetic considerations of the Loma Marcelo skarn, Neoproterozoic basement of the Ventania System, Argentina. Precambrian Research, 302, 358–380, https://doi.org/10.1016/j.precamres.2017.09.021.Suche in Google Scholar

Ballivián Justiniano, C.A., Lajoinie, M.F., Recio, C., Sato, A.M., Basei, M.A.S., Proenza Fernández, J.A., Aiglsperger, T.H., de Barrio, R.E., Curci, M.V., and Lanfranchini, M.E. (2019) Metamorphic evolution of the Loma Marcelo skarn within the geotectonic context of the crystalline basement of the Ventania System (Argentina). Journal of South American Earth Sciences, 92, 56–76, https://doi.org/10.1016/j.jsames.2019.03.001.Suche in Google Scholar

Ballivián Justiniano, C.A., Basei, M.A.S., Sato, A.M., González, P.D., Benítez, M.E., and Lanfranchini, M.E. (2020) The Neoproterozoic basement of the Sauce Chico Inlier (Ventania System): Geochemistry and U-Pb geochronology of igneous rocks with African lineage in central-eastern Argentina. Journal of South American Earth Sciences, 98, 102391, https://doi.org/10.1016/j.jsames.2019.102391.Suche in Google Scholar

Ballivián Justiniano, C.A., Oriolo, S., Arnol, J.A., Renda, E.M., and Basei, M.A.S. (2023a) The U-Pb and Lu-Hf zircon record of the Neoproterozoic tectonomagmatic evolution of the Ventania System basement, central-eastern Argentina: The southernmost exposure of the Dom Feliciano Belt? Precambrian Research, 399, 107224, https://doi.org/10.1016/j.precamres.2023.107224.Suche in Google Scholar

Ballivián Justiniano, C.A., Oriolo, S., Basei, M.A.S., Lanfranchini, M.E., Christiansen, R.O., Uriz, N.J., Vázquez Lucero, S.E., Del Bono, D.A., Forster, M.A., Etcheverry, R.O., and others. (2023b) The Gondwanide deformation along the southwestern border of the Río de la Plata Craton: Geochemical and geochronological constraints on ductile shear zones from the Ventania System basement, Argentina. Journal of South American Earth Sciences, 124, 104275, https://doi.org/10.1016/j.jsames.2023.104275.Suche in Google Scholar

Bellatreccia, F., Cámara, F., Ottolini, L., Della Ventura, G., Cibin, G., and Mottana, A. (2005) Wiluite from Ariccia, Latium, Italy: Occurrence and crystal structure. Canadian Mineralogist, 43, 1457–1468, https://doi.org/10.2113/gscanmin.43.5.1457.Suche in Google Scholar

Bowman, J.R. (1998a) Stable-isotope systematics of skarns. In D.R. Lentz, Ed., Mineralized Intrusion-Related Skarn Systems (Short Course Volume 26), p. 99–145. Mineralogical Association of Canada.Suche in Google Scholar

Bowman, J.R. (1998b) Basic aspects and applications of phase equilibria in the analysis of metasomatic Ca-Mg-Al-Fe-Si skarns. In D.R. Lentz, Ed., Mineralized Intrusion-Related Skarn Systems (Short Course Volume 26), p. 1–49. Mineralogical Association of Canada.Suche in Google Scholar

Brand, R. (2010) WinNormos for Igor. http://www.wissel-gmbh.de/Suche in Google Scholar

Britvin, S.N., Antonov, A.A., Krivovichev, S.V., Armbruster, T., Burns, P.C., and Chukanov, N.V. (2003) Fluorvesuvianite, Ca19(Al,Mg,Fe2+)13[SiO4]10 [Si2O7]4O(F,OH)9, a new mineral species from Pitkäranta, Karelia, Russia: Description and crystal structure. Canadian Mineralogist, 41, 1371–1380, https://doi.org/10.2113/gscanmin.41.6.1371.Suche in Google Scholar

Bucher, K. and Grapes, R. (2011) Petrogenesis of Metamorphic Rocks, 440 p. Springer-Verlag.Suche in Google Scholar

Celestian, A.J., Powers, M., and Rader, S. (2013) In situ Raman spectroscopic study of transient polyhedral distortions during cesium ion exchange into sitinakite. American Mineralogist, 98, 1153–1161, https://doi.org/10.2138/am.2013.4349.Suche in Google Scholar

Chi, G., Diamond, L.W., Lu, H., Lai, J., and Chu, H. (2021) Common problems and pitfalls in fluid inclusion study: A review and discussion. Minerals, 11, 7, https://doi.org/10.3390/min11010007.Suche in Google Scholar

Chukanov, N.V., Panikorovskii, T.L., Goncharov, A.G., Pekov, I.V., Belakovskiy, D.I., Britvin, S.N., Möckel, S., and Vozchikova, S.A. (2019) Milanriederite, (Ca,REE)19Fe3+Al4(Mg,Al,Fe3+)8Si18O68(OH,O)10, a new vesuvianite-group mineral from the Kombat Mine, Namibia. European Journal of Mineralogy, 31, 637–646, https://doi.org/10.1127/ejm/2019/0031-2856.Suche in Google Scholar

Coda, A., Della Giusta, A., Isetti, G., and Mazzi, F. (1970) On the structure of vesuvianite. Atti dell´ Accademia delle Scienze di Torino (Proceedings of the Turin Academy of Sciences), 105, 1–22.Suche in Google Scholar

Cuerda, A.J., Cingolani, C.A., and Barranquero, H.R. (1975) Stratigraphy of the Precambrian basement in the Pan de Azúcar-del Corral hills region, Sierras Australes (Buenos Aires Province). Proceedings of the Second Iberoamerican Congress on Economic Geology, p. 57–63 (vol. 1), Buenos Aires (in Spanish).Suche in Google Scholar

Curci, M., Tessone, M., Etcheverry, R., de Barrio, R., Caballé, M., Lanfranchini, M., and Coriale, N. (2008) Preliminary characterization of hydrothermal events in the Sierras Australes of Buenos Aires Province. Proceedings of the Seventeenth Argentine Geological Congress, p. 536–537 (vol. 2), Buenos Aires (in Spanish).Suche in Google Scholar

Davis, D.W., Lowenstein, T.K., and Spencer, R.J. (1990) Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O, and NaCl-CaCl2-H2O. Geochimica et Cosmochimica Acta, 54, 591–601, https://doi.org/10.1016/0016-7037(90)90355-O.Suche in Google Scholar

Deer, W.A., Howie, R.A., and Zussman, J. (1997) Rock-Forming Minerals, Volume 1A: Orthosilicates, 2nd edition, 932 p. The Geological Society.Suche in Google Scholar

Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H. (2009) OLEX2: A complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339–341, https://doi.org/10.1107/S0021889808042726.Suche in Google Scholar

Dyrek, K., Platonov, A.N., Sojka, Z., and Żabinski, W. (1992) Optical absorption and EPR study of Cu2+ ions in vesuvianite (“cyprine”) from Sauland, Telemark, Norway. European Journal of Mineralogy, 4, 1285–1290, https://doi.org/10.1127/ejm/4/6/1285.Suche in Google Scholar

Filippi, M. (2004) Oxidation of the arsenic-rich concentrate at the Prebuz abandoned mine (Erzgebirge Mts., CZ): Mineralogical evolution. The Science of the Total Environment, 322, 271–282, https://doi.org/10.1016/j.scitotenv.2003.09.024.Suche in Google Scholar

Fitzgerald, S., Rheingold, A.L., and Leavens, P.B. (1986a) Crystal structure of a Cu-bearing vesuvianite. American Mineralogist, 71, 1011–1014.Suche in Google Scholar

Fitzgerald, S., Rheingold, A.L., and Leavens, P.B. (1986b) Crystal structure of a non-P4/nnc vesuvianite from asbestos, Quebec. American Mineralogist, 71, 1483–1488.Suche in Google Scholar

Fitzgerald, S., Leavens, P.B., Rheingold, A.L., and Nelen, J.A. (1987) Crystal structure of a REE-bearing vesuvianite from San Benito County, California. American Mineralogist, 72, 625–628.Suche in Google Scholar

Gabadinho, J., Beteva, A., Guijarro, M., Rey-Bakaikoa, V., Spruce, D., Bowler, M.W., Brockhauser, S., Flot, D., Gordon, E.J., Hall, D.R., and others. (2010) MxCuBE: A synchrotron beamline control environment customized for macromolecular crystallography experiments. Journal of Synchrotron Radiation, 17, 700–707, https://doi.org/10.1107/S0909049510020005.Suche in Google Scholar

Galuskin, E. (2005) Minerals of the vesuvianite group from achtarandite rocks (Wiluj River, Yakutia). Wydawnictwo Uniwersytetu l skiego (in Polish).Suche in Google Scholar

Galuskin, E.V. and Galuskina, I.O. (2000) Wiluite, Ca19(Al,Mg,Fe,Ti)13(B,Al,□)5 Si18O68(O,OH)10, a new mineral species isostructural with vesuvianite, fromthe Sakha Republic, Russian Federation: Discussion. Canadian Mineralogist, 38, 763–764, https://doi.org/10.2113/gscanmin.38.3.763.Suche in Google Scholar

Galuskin, E.V., Galuskina, I.O., Sitarz, M., and Stadnicka, K. (2003a) Si-deficient, OH-substituted, boron-bearing vesuvianite from the Wiluy River, Yakutia, Russia. Canadian Mineralogist, 41, 833–842, https://doi.org/10.2113/gscanmin.41.4.833.Suche in Google Scholar

Galuskin, E.V., Armbruster, T., Malsy, A., Galuskina, I.O., and Sitarz, M. (2003b) Morphology, composition and structure of low-temperature P4/nnc high-fluorine vesuvianite whiskers from polar Yakutia, Russia. Canadian Mineralogist, 41, 843–856, https://doi.org/10.2113/gscanmin.41.4.843.Suche in Google Scholar

Galuskin, E.V., Galuskina, I.O., and Dzierzanowski, P. (2005) Chlorine in vesuvianites. Mineralogia Polonica, 36, 51–61 (Polish Mineralogy).Suche in Google Scholar

Giuseppetti, G. and Mazzi, F. (1983) The crystal structure of a vesuvianite with P4/n symmetry. Tschermak’s Mineralogische und Petrographische Mitteilungen, 31, 277–288, https://doi.org/10.1007/BF01081374 (Mineralogy and Petrology)Suche in Google Scholar

Gnos, E. and Armbruster, T. (2006) Relationship among metamorphic grade, vesuvianite “rod polytypism,” and vesuvianite composition. American Mineralogist, 91, 862–870, https://doi.org/10.2138/am.2006.1973.Suche in Google Scholar

Grecco, L.E., and Gregori, D.A. (1993) Geochemical study of the Cerros Colorados and Aguas Blancas granitic intrusives, Sierras Australes, Buenos Aires Province, Argentina. Proceedings of the Twelfth Argentine Geological Congress and Second Hydrocarbon Exploration Congress, p. 81–89 (vol. 4), Buenos Aires (in Spanish).Suche in Google Scholar

Groat, L.A. and Evans, R.J. (2012) Crystal chemistry of Bi- and Mn-bearing vesuvianite from Långban, Sweden. American Mineralogist, 97, 1627–1634, https://doi.org/10.2138/am.2012.4091.Suche in Google Scholar

Groat, L.A., Hawthorne, F.C., and Ercit, T.S. (1992a) The chemistry of vesuvianite. Canadian Mineralogist, 30, 19–48.Suche in Google Scholar

Groat, L.A., Hawthorne, F.C., and Ercit, T.S. (1992b) The role of fluorine in vesuvianite: A crystal-structure study. Canadian Mineralogist, 30, 1065–1075.Suche in Google Scholar

Groat, L.A., Hawthorne, F.C., and Ercit, T.S. (1994a) Excess Y-group cations in the crystal structure of vesuvianite. Canadian Mineralogist, 32, 497–504.Suche in Google Scholar

Groat, L.A., Hawthorne, F.C., and Ercit, T.S. (1994b) The incorporation of boron into the vesuvianite structure. Canadian Mineralogist, 32, 505–523.Suche in Google Scholar

Groat, L.A., Hawthorne, F.C., Rossman, G.R., and Ercit, T.S. (1995) The infrared-spectroscopy of vesuvianite in the OH region. Canadian Mineralogist, 33, 609–626.Suche in Google Scholar

Groat, L.A., Hawthorne, F.C., Lager, G.A., Schultz, A.J., and Ercit, T.S. (1996) X-ray and neutron crystal-structure refinements of a boron-bearing vesuvianite. Canadian Mineralogist, 34, 1059–1070.Suche in Google Scholar

Groat, L.A., Hawthorne, F.C., Ercit, T.S., and Grice, J.D. (1998) Wiluite, Ca19(Al, Mg,Fe,Ti)13(B,Al,□)5Si18O68(O,OH)10, a new mineral species isostructural with vesuvianite, from the Sakha Republic, Russian Federation. Canadian Mineralogist, 36, 1301–1304.Suche in Google Scholar

Groat, L.A., Evans, R.J., Cempírek, J., McCammon, C., and Houzar, S. (2013) Fe-rich and As-bearing vesuvianite andwiluite from Kozlov, Czech Republic. American Mineralogist, 98, 1330–1337, https://doi.org/10.2138/am.2013.4358.Suche in Google Scholar

Halama, R., Savov, I.P., Garbe-Schönberg, D., Schenk, V., and Toulkeridis, T. (2013) Vesuvianite in high-pressure-metamorphosed oceanic lithosphere (Raspas Complex, Ecuador) and its role for transport of water and trace elements in subduction zones. European Journal of Mineralogy, 25, 193–219, https://doi.org/10.1127/0935-1221/2013/0025-2281.Suche in Google Scholar

Hålenius, U., Bosi, F., and Gatedal, K. (2013) Crystal structure and chemistry of skarn-associated bismuthian vesuvianite. American Mineralogist, 98, 566–573, https://doi.org/10.2138/am.2013.4310.Suche in Google Scholar

Harrington, H.J. (1947) Explanation of Geological Sheets 33m and 34m, Curamalalal and de la Ventana ranges, Buenos Aires Province, 42 p. Dirección de Minas y Geología, Buenos Aires (in Spanish).Suche in Google Scholar

Henmi, C., Kusachi, I., and Henmi, K. (1994) Vesuvianite from Kushiro, Hiroshima Prefecture, Japan. Proceedings of the General Meeting of the International Mineralogical Association, p. 172, Pisa.Suche in Google Scholar

Himmelberg, G.R. and Miller, T.P. (1980) Uranium- and thorium-rich vesuvianite from the Seward Peninsula, Alaska. American Mineralogist, 65, 1020–1025.Suche in Google Scholar

Ibers, J.A. and Hamilton, W.C. (1974) International Tables for X-Ray Crystallography. Volume IV. The Kynoch Press.Suche in Google Scholar

Klaproth, M.H. (1795) Vesuvianite, light brown. Beiträge zur Chemischen Kenntniss der Mineralkörper, 1, 34–35 (Contributions to the chemical knowledge of mineral bodies).Suche in Google Scholar

Kraczka, J. and Żabinski, W. (2003) Mössbauer study of iron in some vesuvianites. Mineralogia Polonica, 34, 37–44.Suche in Google Scholar

Krivovichev, S.V., Krivovichev, V.G., Hazen, R.M., Aksenov, S.M., Avdontceva, M.S., Banaru, A.M., Gorelova, L.A., Ismagilova, R.M., Kornyakov, I.V., Kuporev, I.V., and others. (2022) Structural and chemical complexity of minerals: An update. Mineralogical Magazine, 86, 183–204, https://doi.org/10.1180/mgm.2022.23.Suche in Google Scholar

Kurazhkovskaya, V.S., Borovikova, E.Y., and Alferova, M. (2005) Infrared spectra, unit cell parameters and optical character of boron-bearing vesuvianites and wiluites. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 134, 45–54 (in Russian).Suche in Google Scholar

Lager, G.A., Xie, Q., Ross, F.K., Rossman, G.R., Armbruster, T., Rotella, F.J., and Schultz, A.J. (1999) Hydrogen-atom position in P4/nnc vesuvianite. Canadian Mineralogist, 37, 763–768.Suche in Google Scholar

Machatschki, F. (1932) On the formula of vesuvianite. Zeitschrift für Kristallographie, 81, 148–152.Suche in Google Scholar

Manning, P.G. (1975) Charge-transfer processes and the origin of colour and pleochroism of some Ti-rich vesuvianites. Canadian Mineralogist, 13, 110–116.Suche in Google Scholar

Massabie, A.C., Rossello, E.A., and López Gamundí, O.R. (2005) Paleozoic-Mesozoic cover of the Sierras Australes of Buenos Aires Province. In R.E. de Barrio, R.O. Etcheverry, M.F. Caballé, and E. Llambías, Eds., Geología y Recursos Minerales de la Provincia de Buenos Aires (Sixteenth Argentine Geological Congress), p. 85–100. Asociación Geológica Argentina, Argentina (in Spanish).Suche in Google Scholar

McLennan, S.M. (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2, 2000GC000109, https://doi.org/10.1029/2000GC000109.Suche in Google Scholar

Moiseev, M.M., Panikorovskii, T.L., Aksenov, S.M., Mazur, A.S., Mikhailova, J.A., Yakovenchuk, V.N., Bazai, A.V., Ivanyuk, G.Y., Agakhanov, A.A., Shilovskikh, V.V., and others. (2020) Insights into crystal chemistry of the vesuvianite-group: Manaevite-(Ce), a new mineral with complex mechanisms of its hydration. Physics and Chemistry of Minerals, 47, 18, https://doi.org/10.1007/s00269-020-01086-7.Suche in Google Scholar

Nash, J.T. (1976) Fluid Inclusion Petrology-data from Porphyry Copper Deposits and Application to Exploration. U.S. Geology Survey, Paper 907-D.Suche in Google Scholar

O’Neil, J.R. (1986) Theoretical and experimental aspects of isotopic fractionation. Reviews in Mineralogy, 16, 1–40.Suche in Google Scholar

Ohkawa, M. (1994) Crystal Chemistry and Structure of Vesuvianite. Journal of Science of the Hiroshima University (Series C, Earth and Planetary Sciences), 10, 119–149.Suche in Google Scholar

Ohkawa, M., Yoshiasa, A., and Takeno, S. (1992) Crystal chemistry of vesuvianite: Site preferences of square-pyramidal coordinated sites. American Mineralogist, 77, 945–953.Suche in Google Scholar

Paluszkiewicz, C. and Żabinski, W. (2004) Vibrational spectroscopy as a tool for discrimination of high and low vesuvianite. Vibrational Spectroscopy, 35, 77–80, https://doi.org/10.1016/j.vibspec.2003.11.021.Suche in Google Scholar

Panikorovskii, T.L., Zolotarev Jr, A.A., Krivovichev, S.V., Shilovskikh, V.V., and Bazai, A.V. (2016a) Crystal chemistry of Cu-bearing vesuvianites (“cyprine”) from Kleppan (Norway). Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 145, 131–142 (in Russian).Suche in Google Scholar

Panikorovskii, T.L., Krivovichev, S.V., Zolotarev, A.A. Jr., and Antonov, A.A. (2016b) Crystal chemistry of the low-symmetry (P4nc) vesuvianite from the Kharmankul’ cordon (the south Urals). Zapiski Rossiiskogo Mineralogicheskogo, 145, 94–104 (in Russian).Suche in Google Scholar

Panikorovskii, T.L., Krivovichev, S.V., Galuskin, E.V., Shilovskikh, V.V., Mazur, A.S., and Bazai, A.V. (2016c) Si-deficient, OH-substituted, boron-bearing vesuvianite from Sakha-Yakutia, Russia: A combined single-crystal, 1H MAS-NMR and IR spectroscopic study. European Journal of Mineralogy, 28, 931–941, https://doi.org/10.1127/ejm/2016/0028-2570.Suche in Google Scholar

Panikorovskii, T.L., Shilovskikh, V.V., Avdontseva, E.Y., Zolotarev, A.A. Jr., Pekov, I.V., Britvin, S.N., Hålenius, U., and Krivovichev, S.V. (2017a) Cyprine, Ca19Cu2+(Al,Mg,Mn)12Si18O69(OH)9, a new vesuvianite-group mineral from the Wessels mine, South Africa. European Journal of Mineralogy, 29, 295–306, https://doi.org/10.1127/ejm/2017/0029-2592.Suche in Google Scholar

Panikorovskii, T.L., Shilovskikh, V.V., Avdontseva, E.Y., Zolotarev, A.A., Karpenko, V.Y., Mazur, A.S., Yakovenchuk, V.N., Bazai, A.V., Krivovichev, S.V., and Pekov, I.V. (2017b) Magnesiovesuvianite, Ca19Mg(Al,Mg)12 Si18O69(OH)9, a new vesuvianite-group mineral. Journal of Geosciences (Prague), 62, 25–36, https://doi.org/10.3190/jgeosci.229.Suche in Google Scholar

Panikorovskii, T.L., Chukanov, N.V., Aksenov, S.M., Mazur, A.S., Avdontseva, E.Y., Shilovskikh, V.V., and Krivovichev, S.V. (2017c) Alumovesuvianite, Ca19Al(Al,Mg)12Si18O69(OH)9, a new vesuvianite-group member from the Jeffrey mine, asbestos, Estrie region, Québec, Canada. Mineralogy and Petrology, 111, 833–842, https://doi.org/10.1007/s00710-017-0495-1.Suche in Google Scholar

Panikorovskii, T.L., Chukanov, N.V., Rusakov, V.S., Shilovskikh, V.V., Mazur, A.S., Balassone, G., Ivanyuk, G.Y., and Krivovichev, S.V. (2017d) Vesuvianite from the Somma-Vesuvius Complex: New data and revised formula. Minerals, 7, 248, https://doi.org/10.3390/min7120248.Suche in Google Scholar

Panikorovskii, T.L., Mazur, A.S., Bazai, A.V., Shilovskikh, V.V., Galuskin, E.V., Chukanov, N.V., Rusakov, V.S., Zhukov, Y.M., Avdontseva, E.Y., Aksenov, S.M., and others. (2017e) X-ray diffraction and spectroscopic study of wiluite: Implications for the vesuvianite-group nomenclature. Physics and Chemistry of Minerals, 44, 577–593, https://doi.org/10.1007/s00269-017-0885-2.Suche in Google Scholar

Panikorovskii, T.L., Yakovenchuk, V.N., and Krivovichev, S.V. (2023) X-ray diffraction method of estimation of vesuvianite crystallization temperature. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 152, 94–109 (in Russian).Suche in Google Scholar

Pavese, A., Prencipe, M., Tribaudino, M., and Aagaard, S.S. (1998) X-ray and neutron single-crystal study of P4/n vesuvianite. Canadian Mineralogist, 36, 1029–1037.Suche in Google Scholar

Peters, T. (1961) Differential thermal analysis of Vesuvianite. Schweizerische Mineralogische und Petrographische Mitteilungen, 41, 325–334.Suche in Google Scholar

Peters, T. (1965) A hydrous andradite from the Totalp serpentinite, Davos, GR. American Mineralogist, 50, 1482–1486.Suche in Google Scholar

Phillips, B.L., Allen, F.M., and Kirkpatrick, R.J. (1987) High-resolution solid-state 27Al NMR spectroscopy of Mg-rich vesuvianite. American Mineralogist, 72, 1190–1194.Suche in Google Scholar

Ramos, V.A., Chemale, F. Jr., Naipauer, M., and Pazos, P.J. (2014) A provenance study of the Paleozoic Ventania System (Argentina): Transient complex sources from Western and Eastern Gondwana. Gondwana Research, 26, 719–740, https://doi.org/10.1016/j.gr.2013.07.008.Suche in Google Scholar

Rapela, C.W., Pankhurst, R.J., Fanning, C.M., and Grecco, L.E. (2003) Basement evolution of the Sierra de la Ventana Fold Belt: New evidence for Cambrian continental rifting along the southern margin of Gondwana. Journal of the Geological Society, 160, 613–628, https://doi.org/10.1144/0016-764902-112.Suche in Google Scholar

Roedder, E. (1984) Fluid inclusions. Reviews in Mineralogy and Geochemistry, 12, 646 p.Suche in Google Scholar

Rucklidge, J.C., Kocman, V., Whitlow, S.H., and Gabe, E.J. (1975) The crystal structures of three Canadian vesuvianites. Canadian Mineralogist, 13, 15–21.Suche in Google Scholar

Sellés-Martínez, J. (2001) The geology of Ventania (Buenos Aires Province, Argentina). Journal of Iberian Geology, 27, 43–69 (in Spanish).Suche in Google Scholar

Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica Section C, 71, 3–8, https://doi.org/10.1107/S2053229614024218.Suche in Google Scholar

Shepherd, T.J., Rankin, A.H., and Alderton, D.H.M. (1985) A Practical Guide to Fluid Inclusion Studies, 239 p. Blackie and Sons.Suche in Google Scholar

Sheppard, S.M.F. (1986) Characterization and isotopic variations in natural waters. Reviews in Mineralogy, 16, 165–183.Suche in Google Scholar

Smart, M.M., Moore, C.A., McMillen, C.D., and Kolis, J.W. (2023) Hydrothermal synthesis and crystal structure of vesuvianite compounds, Ca19Al13-Si18O71(OH)7 and Sr19Fe12Ge19O72(OH)6. Crystals, 13, 1257, https://doi.org/10.3390/cryst13081257.Suche in Google Scholar

Tohver, E., Cawood, P.A., Rossello, E.A., and Jourdan, F. (2012) Closure of the Clymene Ocean and formation of West Gondwana in the Cambrian: Evidence from the Sierras Australes of the southernmost Rio de la Plata craton, Argentina. Gondwana Research, 21, 394–405, https://doi.org/10.1016/j.gr.2011.04.001.Suche in Google Scholar

Trommsdorff, V. (1968) Mineral reactions with wollastonite and vesuvianite in a calc-silicate rock of the Alpine disthene zone (Claro, Ticino). Schweizerische Mineralogische und Petrographische Mitteilungen, 48, 655–666.Suche in Google Scholar

Uriz, N.J., Cingolani, C.A., Chemale, F. Jr., Macambira, M.B., and Armstrong, R. (2011) Isotopic studies on detrital zircons of Silurian-Devonian siliciclastic sequences from Argentinean North Patagonia and Sierra de la Ventana regions: Comparative provenance. International Journal of Earth Sciences, 100, 571–589, https://doi.org/10.1007/s00531-010-0597-z.Suche in Google Scholar

Valley, J.M., Peacor, D.R., Bowman, J.R., Essene, E.J., and Allard, M.J. (1985) Crystal chemistry of a Mg-vesuvianite and implications of phase equilibria in the system CaO-MgO-Al2O3-SiO2-H2O-CO2. Journal of Metamorphic Geology, 3, 137–153, https://doi.org/10.1111/j.1525-1314.1985.tb00311.x.Suche in Google Scholar

von Gosen, W., Buggisch, W., and Dimieri, L.V. (1990) Structural and metamorphic evolution of the Sierras Australes (Buenos Aires Province/Argentina). Geologische Rundschau (International Journal of Earth Sciences), 79, 797–821, https://doi.org/10.1007/BF01879216.Suche in Google Scholar

von Gosen, W., Buggisch, W., and Krumm, S. (1991) Metamorphism and deformation mechanisms in the Sierras Australes fold and thrust belt (Buenos Aires Province, Argentina). Tectonophysics, 185, 335–356, https://doi.org/10.1016/0040-1951(91)90453-Y.Suche in Google Scholar

Warr, L.N. (2021) IMA-CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291–320, https://doi.org/10.1180/mgm.2021.43.Suche in Google Scholar

Warren, B.E. and Modell, D.I. (1931) The structure of vesuvianite Ca10Al4(Mg, Fe)2Si9O34(OH)4. Zeitschrift für Kristallographie, 78, 422–432.Suche in Google Scholar

Wilkinson, J.J. (2001) Fluid inclusions in hydrothermal ore deposits. Lithos, 55, 229–272, https://doi.org/10.1016/S0024-4937(00)00047-5.Suche in Google Scholar

Xu, J., Li, G., Fan, G., Ge, X., Zhu, X., and Shen, G. (2017) Hongheite, IMA 2017–027. CNMNC Newsletter No. 39, October 2017, page 1283. Mineralogical Magazine, 81, 1279–1286.Suche in Google Scholar

Zheng, Y.F. (1993) Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth and Planetary Science Letters, 120, 247–263, https://doi.org/10.1016/0012-821X(93)90243-3.Suche in Google Scholar

Received: 2024-08-26
Accepted: 2024-12-30
Published Online: 2025-09-11
Published in Print: 2025-09-25

© 2025 Mineralogical Society of America

Artikel in diesem Heft

  1. Highlights and Breakthroughs
  2. Revisiting the importance of clay minerals in rock varnish
  3. Formation and transformation of clay minerals in Mars-analog rock varnish
  4. Reconstructing volatile evolution in melts using zircon-hosted apatite inclusions: Implications for the use of apatite as a fertility indicator
  5. Vesuvianite as a key tool for the reconstruction of skarn formation conditions: An example from the Sauce Chico Complex, Argentina
  6. Germanium oxidation state and substitution mechanism in Ge-rich sphalerite from MVT deposits: Constraints from X-ray absorption fine structure (XAFS) and geometric optimization
  7. Enrichment mechanism of heavy rare earth elements in magmatic-hydrothermal titanite: Insights from SXAS/XPS experiments and first-principles calculations and implications for regolith-hosted HREE deposits
  8. Thorite: An oddity in phase stability among the zircon-structured orthosilicates at high pressures
  9. High P-T single-crystal elasticity of zircon by Brillouin spectroscopy
  10. Berndlehmannite: A new V-bearing sulfide mineral from the black-shale-hosted Zhongcun vanadium deposit, South China
  11. In situ Raman spectroscopic investigation on the phase transition of grunerite at high pressures
  12. Silicate liquid immiscibility in the Chang’e 5 lunar mare magmas: Constraints on the petrogenesis of lunar granitic rocks
  13. The high-pressure, vacancy-stabilized component in clinopyroxenes
  14. Lianbinite, (NH4)(C2H3O3)(C2H4O3), a new glycolate mineral from the Santa Catalina Mountains, Tucson, Arizona, U.S.A
  15. Mariakrite, [Ca4Al2(OH)12(H2O)4][Fe2S4]: A new mineral and the first layered double hydroxide intercalated with dithioferrate (iron disulfide) chains
  16. New Mineral Names
  17. Book Review
  18. Book Review: Rings of Fire: How an Unlikely Team of Scientists, Ex-Cons, Women, and Native Americans helped win World War II
Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2024-9588/html
Button zum nach oben scrollen