Abstract
Part V of the evolutionary system of mineralogy explores phases produced by aqueous alteration, metasomatism, and/or thermal metamorphism—relicts of ancient processes that affected virtually all asteroids and that are preserved in the secondary mineralogy of meteorites. We catalog 166 historical natural kinds of minerals that formed by alteration in the parent bodies of chondritic and non-chondritic meteorites within the first 20 Ma of the solar system. Secondary processes saw a dramatic increase in the chemical and structural diversity of minerals. These phases incorporate 41 different mineral-forming elements, including the earliest known appearances of species with essential Co, Ge, As, Nb, Ag, Sn, Te, Au, Hg, Pb, and Bi. Among the varied secondary meteorite minerals are the earliest known examples of halides, arsenides, tellurides, sulfates, carbonates, hydroxides, and a wide range of phyllosilicates.
Funding statement: Studies of mineral evolution and mineral ecology have been supported by the Alfred P. Sloan Foundation, the W.M. Keck Foundation, the John Templeton Foundation, the NASA Astrobiology Institute ENIGMA team, a private foundation, and the Carnegie Institution for Science. Any opinions, findings, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the National Aeronautics and Space Administration.
Acknowledgments
We are especially grateful to Alexander Krot and Michael Zolensky, who contributed invaluable, detailed, nuanced, and constructive reviews. Their deep expertise is reflected on every page of this contribution. We also thank Associate Editor Steven Simon, who shared his extensive knowledge of meteorite mineralogy as he shepherded Parts III, IV, and V of this series. Luca Bindi, Chi Ma, and Alan Rubin provided access to important work in press. We thank Asmaa Boujibar, Adrian Brearley, Peter Buseck, Carol Cleland, Robert T. Downs, Olivier Gagné, Edward Grew, Rhian Jones, Sergey Krivovichev, Chi Ma, Glenn MacPherson, Timothy McCoy, Anirudh Prabhu, Alan Rubin, Michael Walter, and Shuang Zhang for thoughtful discussions and comments.
References cited
Abreu, N.M. (2016) Why is it so difficult to classify Renazzo-type (CR) carbonaceous chondrites?—Implications from TEM observations of matrices for the sequences of aqueous alteration. Geochimica et Cosmochimica Acta, 194, 91–122.10.1016/j.gca.2016.08.031Search in Google Scholar
Abreu, N. M., and Brearley, A.J. (2011) Deciphering the nebular and asteroidal record of silicates and organic material in the matrix of the reduced CV3 chondrite Vigarano. Meteoritics & Planetary Science, 46, 252–274.10.1111/j.1945-5100.2010.01149.xSearch in Google Scholar
Ackermand, D., and Raase, P. (1973) Die mineralogische Zusammensetzung des Meteoriten von Kiel. Contributions to Mineralogy and Petrology, 39, 289–300.10.1007/BF00376469Search in Google Scholar
Afiattalab, F., and Wasson, J.T. (1980) Composition of the metal phases in ordinary chondrites: Implications regarding classification and metamorphism. Geochimica et Cosmochimica Acta, 44, 431–446.10.1016/0016-7037(80)90042-3Search in Google Scholar
Ahrens, L.H. (1970) The composition of stony meteorites (VIII). Observations on fractionation between Land H chondrites. Earth and Planetary Science Letters, 9, 345–347.10.1016/0012-821X(70)90133-0Search in Google Scholar
Akai, J. (1988) Incompletely transformed serpentine-type phyllosilicates in the matrix of Antarctic CM chondrites. Geochimica et Cosmochimica Acta, 48, 1593–1599.10.1016/0016-7037(88)90228-1Search in Google Scholar
Akai, J. (1990) Mineralogical evidence of heating events in Antarctic carbonaceous chondrites, Y-86720 and Y-82162. Proceedings of the NIPR Symposium on Antarctic Meteorites, 3, 55–68.Search in Google Scholar
Akai, J. (1992) T-T-T diagram of serpentine and saponite, and estimation of metamorphic heating degree of Antarctic carbonaceous chondrites. Proceedings of the NIPR Symposium on Antarctic Meteorites, 5, 120–135.Search in Google Scholar
Akai, J., and Kanno, J. (1986) Mineralogical study of matrix- and groundmass phyllosilicates and isolated olivines in Yamato-791198 and -793321: With special reference to new finding of a 14 Å chlorite in groundmass. Memoirs of the NIPR Special Issue, 41, 259–275.Search in Google Scholar
Alexander, C.M.O., Barber, D.J., and Hutchison, R. (1986) Hydrous phases and hydrous alteration in U.O.C.s. Meteoritics, 21, 328.Search in Google Scholar
Alexander, C.M.O., Hutchison, R.H., Graham, A.L., and Yabuki, H. (1987) Discovery of scapolite in the Bishunpur (LL3) chondritic meteorite. Mineralogical Magazine, 51, 733–735.10.1180/minmag.1987.051.363.14Search in Google Scholar
Alexander, C.M.O., Hutchison, R., and Barber, D.J. (1989) Origin of chondrule rims and interchondrule matrices in unequilibrated ordinary chondrites. Earth and Planetary Science Letters, 95, 187–207.10.1016/0012-821X(89)90096-4Search in Google Scholar
Alexander, C.M.O., Bowden, R., Fogel, M.L., and Howard, K.T. (2015) Carbonate abundances and isotopic compositions in chondrites. Meteoritics & Planetary Science, 50, 810–833.10.1111/maps.12410Search in Google Scholar
Allen, J.M., Grossman, L., Davis, A.M., and Hutcheon, I.D. (1978) Mineralogy, textures and mode of formation of a hibonite-bearing Allende inclusion. Proceedings of the Lunar and Planetary Science Conference, 9, 1209–1233.Search in Google Scholar
Armstrong, J.T., Meeker, G.P., Huneke, J.C., and Wasserburg, G.J. (1982) The Blue Angel: I. The mineralogy and petrogenesis of a hibonite inclusion from the Murchison meteorite. Geochimica et Cosmochimica Acta, 46, 575–595.10.1016/0016-7037(82)90160-0Search in Google Scholar
Armstrong, J.T., El Goresy, A., and Wasserburg, G.J. (1985) Willy: A prize noble Ur-Fremdling—Its history and implications for the formation of Fremdlinge and CAI. Geochimica et Cosmochimica Acta, 49, 1001–1022.10.1016/0016-7037(85)90315-1Search in Google Scholar
Barber, D.J. (1981) Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites. Geochimica et Cosmochimica Acta, 45, 945–970.10.1016/0016-7037(81)90120-4Search in Google Scholar
Barber, D.J. (1985) Phyllosilicates and other layer-structured materials in stony meteorites. Clay Minerals, 20, 415–454.10.1180/claymin.1985.020.4.01Search in Google Scholar
Barber, D.J., Freeman, L.A., and Bourdillon, A. (1983) Fe-Ni-S-O layer phase in C2M carbonaceous chondrites—a hydrous sulphide? Nature, 305, 295–297.10.1038/305295a0Search in Google Scholar
Barber, D.J., Martin, P.M., and Hutcheon, I.D. (1984) The microstructures of minerals in coarse-grained Ca-Al-rich inclusions from the Allende meteorite. Geochimica et Cosmochimica Acta, 48, 769–783.10.1016/0016-7037(84)90100-5Search in Google Scholar
Barton, P.B. Jr., and Toulmin, P., III (1966) Phase relations involving sphalerite in the Fe-Zn-S system. Economic Geology, 61, 815–849.10.2113/gsecongeo.61.5.815Search in Google Scholar
Benedix, G.K., McCoy, T.J., Keil, K., Bogard, D.D., and Garrison, D.H. (1998) A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism. Geochimica et Cosmochimica Acta, 62, 2535–2553.10.1016/S0016-7037(98)00166-5Search in Google Scholar
Berger, E.L., Keller, L.P., and Lauretta, D.S. (2015) An experimental study of the formation of cubanite (CuFe2S3 in primitive meteorites. Meteoritics & Planetary Science, 50, 1–14.10.1111/maps.12399Search in Google Scholar
Berger, E.L., Lauretta, D.S., Zega, T.J., and Keller, L.P. (2016) Heterogeneous histories of Ni-bearing pyrrhotite and pentlandite grains in the CI chondrites Orgueil and Alais. Meteoritics & Planetary Science, 51, 1813–1829.10.1111/maps.12721Search in Google Scholar
Berkley, J., Jeffrey, G., Keil, K., and Healey, J.T. (1978) Fluorescent accessory phases in the carbonaceous matrix of ureilites. Geophysical Research Letters, 5, 1075–1078.10.1029/GL005i012p01075Search in Google Scholar
Bevan, A.W.R., Downes, P.J., Henry, D.A., Verrall, M., and Haines, P.W. (2019) The Gove relict iron meteorite from Arnhem Land, Northern Territory, Australia. Meteoritics & Planetary Science, 54, 1710–1719.10.1111/maps.13307Search in Google Scholar
Bindi, L., and Xie, X. (2018) Shenzhuangite, NiFeS2, the Ni-analogue of chalcopyrite from the Suizhou L6 chondrite. European Journal of Mineralogy, 30, 165–169.10.1127/ejm/2017/0029-2684Search in Google Scholar
Bischoff, A. (1998) Aqueous alteration of carbonaceous chondrites: Evidence for preaccretionary alteration—A review. Meteoritics & Planetary Science, 33, 1113–1122.10.1111/j.1945-5100.1998.tb01716.xSearch in Google Scholar
Bischoff, A., and Palme, H. (1987) Composition and mineralogy of refractory-metal-rich assemblages from a Ca-AI-rich inclusion in the Allende meteorite. Geochimica et Cosmochimica Acta, 51, 2733–2748.10.1016/0016-7037(87)90153-0Search in Google Scholar
Bischoff, A., Geiger, T., Palme, H., Spettel, B., Schultz, L., Scherer, P., Bland, P., Clayton, R.N., Mayeda, T.K., Herpers, U., Michel, R., and Dittrich-Hannen, B. (1994) Acfer 217—a new member of the Rumuruti chondrite group (R). Meteoritics, 29, 264–274.10.1111/j.1945-5100.1994.tb00680.xSearch in Google Scholar
Bland, P.A., Zolensky, M.E., Benedix, G.K., and Sephton, M.A. (2006) Weathering of chondritic meteorites. In D. S. Lauretta and H. Y. McSween Jr., Eds., Meteorites and the early solar system II, pp. 853–867. University of Arizona Press.10.2307/j.ctv1v7zdmm.45Search in Google Scholar
Blander, M., and Fuchs, L.H. (1975) Calcium-aluminum-rich inclusions in the Allende meteorite: evidence for a liquid origin. Geochimica et Cosmochimica Acta, 39, 1605–1619.10.1016/0016-7037(75)90083-6Search in Google Scholar
Blum, J.D., Wasserburg, G.J., Hutcheon, J.D., Beckett, J.R., and Stolper, E.M. (1988) Domestic origin of opaque assemblages in refractory inclusions in meteorites. Nature, 331, 405–409.10.1038/331405a0Search in Google Scholar
Blum, J.D., Wasserburg, G.J., Hutcheon, J.D., Beckett, J.R., and Stolper, E.M. (1989) Origin of opaque assemblages in C3V meteorites: Implications for nebular and planetary processes. Geochimica et Cosmochimica Acta, 53, 543–556.10.1016/0016-7037(89)90404-3Search in Google Scholar
Boström, K., and Fredriksson, K. (1966) Surface conditions of the Orgueil meteorite parent body as indicated by mineral associations. Smithsonian Miscellaneous Collections, 151, 1–39.Search in Google Scholar
Boyd, R. (1991) Realism, anti-foundationalism and the enthusiasm for natural kinds. Philosophical Studies, 61, 127–148.10.1007/BF00385837Search in Google Scholar
Boyd, R. (1999) Homeostasis, species, and higher taxa. In R. Wilson, Ed., Species: New interdisciplinary essays, pp. 141–186. Cambridge University Press.Search in Google Scholar
Brearley, A.J. (1990) Carbon-rich aggregates in type 3 ordinary chondrites: Characterization, origins, and thermal history. Geochimica et Cosmochimica Acta, 54, 831–850.10.1016/0016-7037(90)90377-WSearch in Google Scholar
Brearley, A.J. (1993a) Matrix and fine-grained rims in the un equilibrated CO3 chondrite, ALH A77307: Origins and evidence for diverse, primitive nebular dust components. Geochimica et Cosmochimica Acta, 57, 1521–1550.10.1016/0016-7037(93)90011-KSearch in Google Scholar
Brearley, A.J. (1993b) Occurrence and possible significance of rare Ti-oxides (Magnéli phases) in carbonaceous chondrite matrices. Meteoritics, 28, 590–595.10.1111/j.1945-5100.1993.tb00283.xSearch in Google Scholar
Brearley, A.J. (1995) Aqueous alteration and brecciation in Bells, an unusual, saponite-bearing CM carbonaceous chondrite. Geochimica et Cosmochimica Acta, 59, 2291–2317.10.1016/0016-7037(95)00107-BSearch in Google Scholar
Brearley, A.J. (1996) A comparison of FeO-rich olivines in chondrules, matrix, and dark inclusions in Allende and the discovery of phyllosilicate veins in chondrule enstatite. Meteoritics, 31, A21–22.Search in Google Scholar
Brearley, A.J. (1997a) Disordered biopyriboles, amphibole, and talc in the Allende meteorite: Products of nebular or parent body aqueous alteration? Science, 276, 1103–1105.10.1126/science.276.5315.1103Search in Google Scholar
Brearley, A.J. (1997b) Phyllosilicates in the matrix of the unique carbonaceous chondrite, LEW 85332 and possible implications for the aqueous alteration of CI chondrites. Meteoritics & Planetary Science, 32, 377–388.10.1111/j.1945-5100.1997.tb01281.xSearch in Google Scholar
Brearley, A.J. (2006) The action of water. In D.S. Lauretta and H.Y. McSween Jr., Eds., Meteorites and the Early Solar System II, pp. 587–624. University of Arizona Press.10.2307/j.ctv1v7zdmm.35Search in Google Scholar
Brearley, A.J., and Jones, R.H. (1998) Chondritic meteorites. Reviews in Mineralogy, 36, 3.01–3.398.Search in Google Scholar
Brearley, A.J., and Prinz, M. (1992) CI-like clasts in the Nilpena polymict ureilite: Implications for aqueous alteration processes in CI chondrites. Geochimica et Cosmochimica Acta, 56, 1373–1386.10.1016/0016-7037(92)90068-TSearch in Google Scholar
Brigham, C.A., Yabuki, H., Ouyang, Z., Murrell, M.T., El Goresy, A., and Burnett, D. S. (1986) Silica-bearing chondrules and clasts in ordinary chondrites. Geochimica et Cosmochimica Acta, 50, 1655–1666.10.1016/0016-7037(86)90128-6Search in Google Scholar
Britvin, S.N., Guo, X.Y., Kolomensky, V.D., Boldyreva, M.M., Kretser, Y.L., and Yagovkina, M.A. (2001) Cronusite, Ca0.2(H2O)2CrS2, a new mineral from the Norton County enstatite achondrite. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva, 130, 29–36.Search in Google Scholar
Britvin, S.N., Bogdanova, A.N., Boldyreva, M.M., and Aksenova, G.Y. (2008) Ruda-shevskyite, the Fe-dominant analogue of sphalerite, a new mineral: Description and crystal structure. American Mineralogist, 93, 902–909.10.2138/am.2008.2582Search in Google Scholar
Browning, L., McSween, H.Y., Jr., and Zolensky, M. (1996) Correlated alteration effects in CM carbonaceous chondrites. Geochimica et Cosmochimica Acta, 60, 2621–2633.10.1016/0016-7037(96)00121-4Search in Google Scholar
Brownlee, D.E. (2014) The Stardust mission: Analyzing samples from the edge of the Solar System. Annual Review of Earth and Planetary Science, 42, 179–205.10.1146/annurev-earth-050212-124203Search in Google Scholar
Brownlee, D.E. (2016) Cosmic dust: Building blocks of planets falling from the sky. Elements, 12, 165–170.10.2113/gselements.12.3.165Search in Google Scholar
Brunet, F., Chopin, C., and Seifert, F. (1998) Phase relations in the MgO-P2O5-H2O system and the stability of phosphoellenbergerite: Petrological implications. Contributions to Mineralogy and Petrology, 131, 54–70.10.1007/s004100050378Search in Google Scholar
Buchwald, V.F. (1975) Handbook of Iron Meteorites. University of California Press.Search in Google Scholar
Buchwald, V.F. (1977) The mineralogy of iron meteorites. Philosophical Transactions of the Royal Society of London, A, 286, 453–491.10.1098/rsta.1977.0127Search in Google Scholar
Bunch, T.E., and Chang, S. (1980) Carbonaceous chondrites-II. Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions. Geochimica et Cosmochimica Acta, 44, 1543–1577.10.1016/0016-7037(80)90118-0Search in Google Scholar
Bunch, T.E., Keil, K., and Snetsinger, K.G. (1967) Chromite composition in relation to chemistry and texture of ordinary chondrites. Geochimica et Cosmochimica Acta, 31, 1568–1582.10.1016/0016-7037(67)90105-6Search in Google Scholar
Burke, E.A.J. (2006) The end of CNMMN and CCM—Long live the CNMNC! Elements, 2, 388.10.2113/gselements.2.6.388Search in Google Scholar
Buseck, P.R. (1968) Mackinawite, pentlandite and native copper from the Newport pallasite. Mineralogical Magazine, 36, 717–725.10.1180/minmag.1968.036.281.13Search in Google Scholar
Buseck, P.R., and Hua, X. (1993) Matrices of carbonaceous chondrite meteorites. Annual Reviews of Earth and Planetary Science, 21, 255–305.10.1146/annurev.ea.21.050193.001351Search in Google Scholar
Buseck, P.R., and Keil, K. (1966) Meteoritic rutile. American Mineralogist, 51, 1506–1515.Search in Google Scholar
Caillet Komorowski, C., El Goresy, A., Miyahara, M., Boudouma, O., and Ma, C. (2012) Discovery of Hg-Cu-bearing metal-sulfide assemblages in a primitive H-3 chondrite: Towards a new insight in Early Solar System processes. Earth and Planetary Science Letters, 349-350, 261–271.10.1016/j.epsl.2012.06.039Search in Google Scholar
Chan, Q.H.S., Zolensky, M.E., Martinez, J.E., Tsuchiyama, A., and Miyake, A. (2016) Magnetite plaquettes are naturally asymmetric materials in meteorites. American Mineralogist, 101, 2041–2050.10.2138/am-2016-5604Search in Google Scholar
Chan, Q.H.S., Zolensky, M.E., Kebukawa, Y., Fries, M., Ito, M., Steele, A., Rahman, Z., Nakato, A., Kilcoyne, A.L.D., Suga, H., Takahashi, Y., Takeichi, Y., and Mase, K. (2018) Organic matter in extraterrestrial water-bearing salt crystals. Science Advances, 4, eaao3521, 10 p.10.1126/sciadv.aao3521Search in Google Scholar
Chaumard, N., Devouard, B., Bouvier, A., and Wadhwa, M. (2014) Metamorphosed calcium-aluminum inclusions in CK carbonaceous chondrites. Meteoritics & Planetary Science, 49, 419–452.10.1111/maps.12260Search in Google Scholar
Chukanov, N., Pekov, I., Levitskaya, L., and Zadov, A. (2009) Droninoite, Ni3Fe23+Cl(OH)8·2H2O, a new hydrotalcite-group mineral species from the weathered Dronino meteorite. Geology of Ore Deposits, 51, 767–773.10.1134/S1075701509080091Search in Google Scholar
Ciesla, F.J., Lauretta, D.S., Cohen, B.A., and Hood, L.L. (2003) A nebular origin for chondritic fine-grained phyllosilicates. Science, 299, 549–552.10.1126/science.1079427Search in Google Scholar
Clayton, R.N., and Mayeda, T.K. (1984) The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth and Planetary Science Letters, 67, 151–161.10.1016/0012-821X(84)90110-9Search in Google Scholar
Clayton, R.N., MacPherson, G.J., Hutcheon, I.D., Davis, A.M., Grossman, L., Mayeda, T.K., Molini-Velsko, C., Allen, J.M., and El Goresy, A. (1984) Two forsteritebearing FUN inclusions in the Allende meteorite. Geochimica et Cosmochimica Acta, 48, 535–548.10.1016/0016-7037(84)90282-5Search in Google Scholar
Cleland, C.E., Hazen, R.M., and Morrison, S.M. (2020) Historical natural kinds in mineralogy: Systematizing contingency in the context of necessity. Proceedings of the National Academy of Sciences, 118, e2015370118 (8 p).10.1073/pnas.2015370118Search in Google Scholar PubMed PubMed Central
Cody, G.D., Alexander, C.M.O’D., Yabuta, H., Kilcoyne, A.L.D., Arak, T., Ade, H., Dera, P., Fogel, M., Militzer, B., and Mysen, B.O. (2008) Organic thermometry for chondritic parent bodies. Earth and Planetary Science Letters, 272, 446–455.10.1016/j.epsl.2008.05.008Search in Google Scholar
Cohen, R.E., Kornacki, A.S., and Wood, J.A. (1983) Mineralogy and petrology of chondrules and inclusions in the Mokoia CV3 chondrite. Geochimica et Cosmochimica Acta, 47, 1739–1757.10.1016/0016-7037(83)90023-6Search in Google Scholar
Connelly, J.N., Bizzarro, M., Krot, A.N., Nordlund, Å., Wielandt, D., and Ivanova, M.A. (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651–655.10.1126/science.1226919Search in Google Scholar
Connolly, H.C., Zipfel, J., Grossman, J.N., Folco, L., Smith, C., Jones, R.H., Righter, K., Zolensky, M., Russell, S.S., and Benedix, G.K. (2006) The Meteoritical Bulletin, no. 90, 2006 September. Meteoritics & Planetary Science, 41, 1383–1418.10.1111/j.1945-5100.2006.tb00529.xSearch in Google Scholar
Crozaz, G., and Zinner, E. (1985) Ion probe determinations of the rare earth concentrations of individual meteoritic phosphate grains. Earth and Planetary Science Letters, 73, 41–52.10.1016/0012-821X(85)90033-0Search in Google Scholar
Davis, A.M., MacPherson, G.J., Clayton, R.N., Mayeda, T.K., Sylvester, P.J., Grossman, L., Hinton, R.W., and Laughlin, J.R. (1991) Melt solidification and late-stage evaporation in the evolution of a FUN inclusion from the Vigarano C3V chondrite. Geochimica et Cosmochimica Acta, 55, 621–637.10.1016/0016-7037(91)90016-XSearch in Google Scholar
Davoisne, C., Djouadi, Z., Leroux, H., d’Hendecourt, L., Jones, A., and Deboffle, D. (2006) The origin of GEMS in IDPs as deduced from microstructural evolution of amorphous silicates with annealing. Astronomy & Astrophysics, 448, L1–L4.10.1051/0004-6361:200600002Search in Google Scholar
Delaney, J.S., Prinz, M., and Takeda, H. (1984) The polymict eucrites. Proceedings of the Lunar and Planetary Science Conference, 15, C251–C288.10.1029/JB089iS01p0C251Search in Google Scholar
Devouard, B., and Buseck, P.R. (1997) Phosphorus-rich iron, nickel sulfides in CM2 chondrites: Condensation or alteration products? Meteoritics & Planetary Science Supplement, 32, 34.Search in Google Scholar
Dobricǎ, E., and Brearley, A.J. (2014) Widespread hydrothermal alteration minerals in the fine-grained matrices of the Tieschitz unequilibrated ordinary chondrite. Meteoritics & Planetary Science, 49, 1323–1349.10.1111/maps.12335Search in Google Scholar
Dodd, R.T. (1969) Metamorphism of the ordinary chondrites: A review. Geochimica et Cosmochimica Acta, 33, 161–203.10.1016/0016-7037(69)90138-0Search in Google Scholar
Dodd, R.T. (1981) Meteorites: A petrologic-chemical synthesis. Cambridge University Press.Search in Google Scholar
Doyle, P.M., Jogo, K., Nagashima, K., Krot, A.N., Wakita, S., Ciesla, F.J., and Hutcheon, I.D. (2015) Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nature Communications, 6, 1–10.10.1038/ncomms8444Search in Google Scholar PubMed
DuFresne, E.R., and Anders, E. (1962) On the chemical evolution of the carbonaceous chondrites. Geochimica et Cosmochimica Acta, 26, 1085–1114.10.1016/0016-7037(62)90047-9Search in Google Scholar
Dunn, T.L., Gross, J., Ivanova, M.A., Runyon, S.E., and Bruck, A.M. (2016) Magnetite in the unequilibrated CK chondrites: Implications for metamorphism and new insights into the relationship between the CV and CK chondrites. Meteoritics & Planetary Science, 51, 1701–1720.10.1111/maps.12691Search in Google Scholar
Dyl, K.A., Bischoff, A., Ziegler, K., Young, E.D., Wimmer, K., and Bland, P.A. (2012) Early Solar System hydrothermal activity in chondritic asteroids on 1–10-year timescales. Proceedings of the National Academy of Sciences, 109, 18306–18311.10.1073/pnas.1207475109Search in Google Scholar
El Goresy, A. (1976) Opaque oxide minerals in meteorites. In D. Rumble, Ed., Oxide minerals, pp. EG47-EG72. Mineralogical Society of America.10.1515/9781501508561-011Search in Google Scholar
El Goresy, A., and Ehlers, K. (1989) Sphalerites in EH chondrites: I. Textural relations, compositions, diffusion profiles, and pressure-temperature histories. Geochimica et Cosmochimica acta, 53, 1657–1668.10.1016/0016-7037(89)90247-0Search in Google Scholar
EI Goresy, A., Nagel, K., and Ramdohr, P. (1978) Fremdlinge and their noble relatives. Proceedings of the Lunar and Planetary Science Conference, 9, 1279–1303.Search in Google Scholar
EI Goresy, A., Nagel, K., and Ramdohr, P. (1979) Spinel framboids and Fremdlinge in Allende inclusions: Possible sequential markers in the early history of the solar system. Proceedings of the Lunar and Planetary Science Conference, 10, 833–850.Search in Google Scholar
El Goresy, A., Palme, H., Yabuki, H., Nagel, K., Herrwerth, I., and Ramdohr, P. (1984) A calcium-aluminum inclusion from the Essebi (CM2) chondrite: Evidence for captured spinel-hibonite spherules and for an ultrarefractory rimming sequence. Geochimica et Cosmochimica Acta, 48, 2283–2298.10.1016/0016-7037(84)90224-2Search in Google Scholar
El Goresy, A., Yabuki, H., Ehlers, K., Woolum, D., and Pernicka, E. (1988) Qingzhen and Yamato-691: A tentative alphabet for the EH chondrites. Proceedings of the NIPR Symposium on Antarctic Meteorites, 1, 65–101.Search in Google Scholar
El Goresy, A., Zinner, E., Pellas, P., and Caillet, C. (2005) A menagerie of graphite morphologies in the Acapulco meteorite with diverse carbon and nitrogen isotopic signatures: Implications for the evolution history of acapulcoite meteorites. Geochimica et Cosmochimica Acta, 69, 4535–4556.10.1016/j.gca.2005.03.051Search in Google Scholar
Endress, M., and Bischoff, A. (1996) Carbonates in CI chondrites: Clues to parent body evolution. Geochimica et Cosmochim Acta, 60, 489–507.10.1016/0016-7037(95)00399-1Search in Google Scholar
Endress, M., Keil, K., Bischoff, A., Spettel, B., Clayton, R.N., and Mayeda, T.K. (1994) Origin of dark clasts in the Acfer 059IEI Djouf 001 CR2 chondrite. Meteoritics, 29, 26–40.10.1111/j.1945-5100.1994.tb00650.xSearch in Google Scholar
Endress, M., Zinner, E.K., and Bischoff, A. (1996) Early aqueous activity on primitive meteorite parent bodies. Nature, 379, 701–703.10.1038/379701a0Search in Google Scholar PubMed
Ereshefsky, M. (2014) Species, historicity, and path dependency. Philosophy of Science, 81, 714–726.10.1086/677202Search in Google Scholar
Fegley, B. Jr., and Post, J.E. (1985) A refractory inclusion in the Kaba CV3 chondrite: Some implications for the origin of spinel-rich objects in chondrites. Earth and Planetary Science Letters, 75, 297–310.10.1016/0012-821X(85)90174-8Search in Google Scholar
Fintor, K., Park, C., Nagy, S., Pál-Molnár, E., and Krot, A.N. (2014) Hydrothermal origin of hexagonal CaAl2Si2O8 (dmisteinbergite) in a compact type A CAI from the Northwest Africa 2086 CV3 chondrite. Meteoritics & Planetary Science, 49, 812–823.10.1111/maps.12294Search in Google Scholar
Fodor, R. V., Keil, K., and Gomes, C.B. (1977) Studies of Brazilian meteorites. IV Origin of a dark-colored, unequilibrated lithic fragment in the Rio Negro chondrite. Revista Brasileira de Geosciéncias, 7, 45–57.10.25249/0375-7536.19774557Search in Google Scholar
Fredriksson, K., and Kerridge, J.F. (1988) Carbonates and sulfates in Cl chondrites: Formation by aqueous activity on the parent body. Meteoritics, 23, 35–44.10.1111/j.1945-5100.1988.tb00894.xSearch in Google Scholar
Fuchs, L.H. (1966) Djerfisherite, alkali copper-iron sulfide: A new mineral from enstatite chondrites. Science, 153, 166–167.10.1126/science.153.3732.166Search in Google Scholar
Fuchs, L.H. (1969) Occurrence of cordierite and aluminous orthopyroxene in the Allende meteorite. American Mineralogist, 4, 1645–1653.Search in Google Scholar
Fuchs, L.H. (1971) Occurrence of wollastonite, rhonite and andradite in the Allende meteorite. American Mineralogist, 56, 2053–2068.Search in Google Scholar
Fuchs, L.H. (1974) Grossular in the Allende (Type III carbonaceous) meteorite. Meteoritics, 13, 73–88.10.1111/j.1945-5100.1974.tb00058.xSearch in Google Scholar
Fuchs, L.H., and Blander, M. (1977) Molybdenite in calcium-aluminium-rich inclusions in the Allende meteorite. Geochimica et Cosmochimica Acta, 41, 1170–1174.10.1016/0016-7037(77)90114-4Search in Google Scholar
Fuchs, L.H., Frondel, C., and Klein, C. (1966) Roedderite, a new mineral from the Indarch meteorite. American Mineralogist, 51, 949–955.Search in Google Scholar
Fuchs, L.H., Olsen, E., and Jensen, K.J. (1973) Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite. Smithsonian Contributions to Earth Science, 10, 1–127.10.5479/si.00810274.10.1Search in Google Scholar
Fujiya, W., Sugiura, N., Hotta, H., Ichimura, K., and Sano, Y. (2012) Evidence for the late formation of hydrous asteroids from young meteoritic carbonates. Nature Communications, 3, 1–6.10.1038/ncomms1635Search in Google Scholar PubMed
Ganino, C., and Libourel, G. (2017) Reduced and unstratified crust in CV chondrite parent body. Nature Communication, 18, 261, 10 p.10.1038/s41467-017-00293-1Search in Google Scholar
Geiger, T., and Bischoff, A. (1995) Formation of opaque minerals in CK chondrites. Planetary and Space Science, 43, 485–498.10.1016/0032-0633(94)00173-OSearch in Google Scholar
Ghosh, A., Weidenschilling, S.J., McSween, H.Y. Jr., and Rubin, A. (2006) Asteroidal heating and thermal stratification of the asteroid belt. In D.S. Lauretta and H.Y. McSween Jr., Eds., Meteorites and the Early Solar System II, pp. 555–566. University of Arizona Press.10.2307/j.ctv1v7zdmm.33Search in Google Scholar
Godman, M. (2018) Scientific realism with historical essences: The case of species. Synthese. https://doi.org/10.1007/s11229-018-02034-310.1007/s11229-018-02034-3Search in Google Scholar
Gomes, C.B., and Keil, K. (1980) Brazilian stone meteorites. University of New Mexico Press.Search in Google Scholar
Gooding, J.L. (1981) Mineralogical aspects of terrestrial weathering effects in chondrites from Allan Hills, Antarctica. Proceedings of the Lunar and Planetary Science Conference, 12B, 1105–1122.Search in Google Scholar
Gooding, J.L. (1985) Clay minerals in meteorites: Preliminary identification by analysis of goodness-of-fit to calculated structural formulas. Lunar and Planetary Science, 16, 278–279.Search in Google Scholar
Gooding, J.L., Wentworth, S.J., and Zolensky, M.E. (1991) Aqueous alteration of the Nakhla meteorite. Meteoritics & Planetary Science, 26, 135–143.10.1111/j.1945-5100.1991.tb01029.xSearch in Google Scholar
Goodrich, C.A., Jones, J.H., and Berkeley, J.L. (1987) Origin and evolution of the ureilite parent magmas: Multi-stage igneous activity on a large parent body. Geochimica et Cosmochimica Acta, 51, 2255–2273.10.1016/0016-7037(87)90279-1Search in Google Scholar
Gounelle, M., and Zolensky, M.E. (2001) A terrestrial origin for sulfate veins in CI1 chondrites. Meteoritics & Planetary Science, 36, 1321–1329.10.1111/j.1945-5100.2001.tb01827.xSearch in Google Scholar
Grady, M.M., Pratesi, G., and Moggi-Cecchi, V. (2015) Atlas of Meteorites. Cambridge University Press.Search in Google Scholar
Greenwood, R.C., Hutchison, R., Huss, G.R., and Hutcheon, I.D. (1992) CAls in CO3 meteorites: Parent body or nebular alteration? Meteoritics, 27, 229.10.1111/j.1945-5100.1992.tb01067.xSearch in Google Scholar
Greenwood, R.C., Lee, M.R., Hutchison, R., and Barber, D.J. (1994) Formation and alteration of CAls in Cold Bokkeveld (CM2). Geochimica et Cosmochimica Acta, 58, 1913–1935.10.1016/0016-7037(94)90424-3Search in Google Scholar
Greshake, A. (1997) The primitive matrix components of the unique carbonaceous chondrite Acfer 094: A TEM study. Geochimica et Cosmochimica Acta, 61, 437–452.10.1016/S0016-7037(96)00332-8Search in Google Scholar
Grew, E.S., Yates, M.G., Beane, R.J., Floss, C., and Gerbi, C. (2010) Chopinite-sarcopside solid solution, [(Mg,Fe)3◻](PO42, in GRA95209, a transitional acapulcoite: Implications for phosphate genesis in meteorites. American Mineralogist, 95, 260–272.10.2138/am.2010.3153Search in Google Scholar
Grossman, L. (1975) Petrography and mineral chemistry of Ca-rich inclusions in the Allende meteorite. Geochimica et Cosmochimica Acta, 39, 433–454.10.1016/0016-7037(75)90099-XSearch in Google Scholar
Grossman, J.N., and Brearley, A.J. (2005) The onset of metamorphism in ordinary and carbonaceous chondrites. Meteoritics & Planetary Science, 40, 87–122.10.1111/j.1945-5100.2005.tb00366.xSearch in Google Scholar
Grossman, J.N., Rubin, A.E., Rambaldi, E.R., Rajan, R.S., and Wasson, J.T. (1985) Chondrules in the Qingzhen type-3 enstatite chondrite: Possible precursor components and comparison to ordinary chondrite chondrules. Geochimica et Cosmochimic Acta, 49, 1781–1795.10.1016/0016-7037(85)90149-8Search in Google Scholar
Haggerty, S.E., and McMahon, B.M. (1979) Magnetite-sulfide-metal complexes in the Allende meteorite. Proceedings of the Lunar and Planetary Science Conference, 10, 851–870.Search in Google Scholar
Harries, D., and Zolensky, M.E. (2016) Mineralogy of iron sulfides in CM1 and CI1 lithologies of the Kaidun breccia: Records of extreme to intense hydrothermal alteration. Meteoritics & Planetary Science, 51, 1096–1109.10.1111/maps.12648Search in Google Scholar
Hashimoto, A., and Grossman, L. (1985) SEM-petrography of Allende fine-grained inclusions. Lunar and Planetary Science, 16, 323–324.Search in Google Scholar
Hatert, F., Mills, S.J., Hawthorne, F.C., and Rumsey, M.S. (2021) A comment on “An evolutionary system of mineralogy: Proposal for a classification of planetary materials based on natural kind clustering.” American Mineralogist, 106, 150–153.10.2138/am-2021-7590Search in Google Scholar
Hawley, K., and Bird, A. (2011) What are natural kinds? Philosophical Perspectives, 25, 205–221.10.1111/j.1520-8583.2011.00212.xSearch in Google Scholar
Hazen, R.M. (2019) An evolutionary system of mineralogy: Proposal for a classification based on natural kind clustering. American Mineralogist, 104, 810–816.10.2138/am-2019-6709CCBYNCNDSearch in Google Scholar
Hazen, R.M. (2021) Reply to “A comment on ‘An evolutionary system of mineralogy: Proposal for a classification of planetary materials based on natural kind clustering’.” American Mineralogist, 106, 154–156.10.2138/am-2021-7773Search in Google Scholar
Hazen, R.M., and Ausubel, J.H. (2016) On the nature and significance of rarity in mineralogy. American Mineralogist, 101, 1245–1251.10.2138/am-2016-5601CCBYSearch in Google Scholar
Hazen, R.M., and Eldredge, N. (2010) Themes and variations in complex systems. Elements, 6(1), 43–46.10.2113/gselements.6.1.43Search in Google Scholar
Hazen, R.M., and Morrison, S.M. (2020) An evolutionary system of mineralogy, Part I: stellar mineralogy (>13 to 4.6 Ga). American Mineralogist, 105, 627–651.10.2138/am-2020-7173Search in Google Scholar
Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.L., Sverjensky, D.A., and Yang, H. (2008) Mineral evolution. American Mineralogist, 93, 1693–1720.10.2138/am.2008.2955Search in Google Scholar
Hazen, R.M., Sverjensky, D.A., Azzolini, D., Bish, D.L., Elmore, S.C., Hinnov, L., and Milliken, R.E. (2013) Clay mineral evolution. American Mineralogist, 98, 2007–2029.10.2138/am.2013.4425Search in Google Scholar
Hazen, R.M., Grew, E. S., Downs, R. T., Golden, J., and Hystad, G. (2015) Mineral ecology: Chance and necessity in the mineral diversity of terrestrial planets. Canadian Mineralogist, 53, 295–323.10.3749/canmin.1400086Search in Google Scholar
Hazen, R.M., Morrison, S.M., and Prabhu, A. (2021) An evolutionary system of mineralogy. Part III: Primary chondrule mineralogy (4566 to 4561 Ma). American Mineralogist, 106, 325–350.10.2138/am-2020-7564Search in Google Scholar
Herndon, J.M., and Rudee, M.L. (1978) Thermal history of the Abee enstatite chondrite. Earth and Planetary Science Letters, 41, 101–106.10.1016/0012-821X(78)90046-8Search in Google Scholar
Herndon, J.M., Rowe, M.W., Larson, E.E., and Watson, D.E. (1975) Origin of magnetite and pyrrhotite in carbonaceous chondrites. Nature, 253, 516–518.10.1038/253516a0Search in Google Scholar
Hopp, T., and Vollmer, C. (2018) Chemical composition and iron oxidation state of amorphous matrix silicates in the carbonaceous chondrite Acfer 094. Meteoritics & Planetary Science, 53, 153–166.10.1111/maps.12991Search in Google Scholar
Hua, X., and Buseck, P.R. (1995) Fayalite in Kaba and Mokoai carbonaceous chondrites. Geochimica et Cosmochimica Acta, 59, 563–578.10.1016/0016-7037(94)00383-WSearch in Google Scholar
Hua, X., Adam, J., Palme, H., and El Goresy, A. (1988) Fayalite-rich rims, veins, and halos around and in forsteritic olivines in CAIs and chondrules in carbonaceous chondrites: Types, compositional profiles and constraints on their formation. Geochimica et Cosmochimica Acta, 52, 1389–1408.10.1016/0016-7037(88)90210-4Search in Google Scholar
Hua, X., Eisenhour, D.D., and Buseck, P.R. (1995) Cobalt-rich, nickel-poor metal (wairauite) in the Ningqiang carbonaceous chondrite. Meteoritics, 30, 106–109.10.1111/j.1945-5100.1995.tb01217.xSearch in Google Scholar
Huss, G.R., Rubin, A.E., and Grossman, J.N. (2006) Thermal metamorphism in chondrites. In D. S. Lauretta and H.Y. McSween Jr., Eds., Meteorites and the Early Solar System II, pp. 567–586. University of Arizona Press.10.2307/j.ctv1v7zdmm.34Search in Google Scholar
Hutcheon, I.D., Armstrong, J. T., and Wasserburg, G.J. (1987) Isotopic studies of Mg, Fe, Mo, Ru and W in fremdlinge from Allende refractory inclusions. Geochimica et Cosmochimica Acta, 51, 3175–3192.10.1016/0016-7037(87)90126-8Search in Google Scholar
Hutchison, R., Alexander, C.M.O., and Barber, D.J. (1987) The Semarkona meteorite: First recorded occurrence of smectite in an ordinary chondrite, and its implications. Geochimica et Cosmochimica Acta, 51, 1875–1882.10.1016/0016-7037(87)90178-5Search in Google Scholar
Hystad, G., Downs, R.T., and Hazen, R.M. (2015a) Mineral frequency distribution data conform to a LNRE model: Prediction of Earth’s “missing” minerals. Mathematical Geosciences, 47, 647–661.10.1007/s11004-015-9600-3Search in Google Scholar
Hystad, G., Downs, R.T., Grew, E.S., and Hazen, R.M. (2015b) Statistical analysis of mineral diversity and distribution: Earth’s mineralogy is unique. Earth and Planetary Science Letters, 426, 154–157.10.1016/j.epsl.2015.06.028Search in Google Scholar
Hystad, G., Eleish, A., Downs, R.T., Morrison, S.M., and Hazen, R.M. (2019) Bayesian estimation of Earth’s undiscovered mineralogical diversity using noninformative priors. Mathematical Geosciences, 51, 401–417.10.1007/s11004-019-09795-8Search in Google Scholar
Ichikawa, O., and Ikeda, Y. (1995) Petrology of the Yamato-8449 CR chondrite. Proceedings of the NIPR Symposium on Antarctic Meteorites, 8, 63–78.Search in Google Scholar
Ikeda, Y. (1982) Petrology of the ALH-77003 chondrite (C3). Memoirs of the NIPR Special Issue, 25, 34–65.Search in Google Scholar
Ikeda, Y. (1983) Alteration of chondrules and matrices in the four Antarctic carbonaceous chondrites ALH 77307 (C3), Y-790123 (C2), Y-75293(C2) and Y-74662(C2). Memoirs of the NIPR Special Issue, 30, 93–108.Search in Google Scholar
Ikeda, Y. (1989) Petrochemical study of the Yamato-691 enstatite chondrite (E3) IV: Descriptions and mineral chemistry of opaque nodules. Proceedings of the NIPR Symposium on Antarctic Meteorites, 2, 109–146.Search in Google Scholar
Ikeda, Y. (1992) An overview of the research consortium, “Antarctic carbonaceous chondrites with CI affinities,” Yamato-86720, Yamato-82162, and Belgica-7904. Proceedings of the NIPR Symposium on Antarctic Meteorites, 5, 49–73.Search in Google Scholar
Ikeda, Y., and Kimura, M. (1995) Anhydrous alteration of Allende chondrules in the solar nebula I: Description and alteration of chondrules with known oxygen-isotopic compositions. Proceedings of the NIPR Symposium on Antarctic Meteorites, 8, 97–122.Search in Google Scholar
Ikeda, Y., and Prinz, M. (1993) Petrologic study of the Belgica 7904 carbonaceous chondrite: hydrous alteration, oxygen isotopes and relationship to CM and CI chondrites. Geochimica et Cosmochimica Acta, 57, 439–452.10.1016/0016-7037(93)90442-YSearch in Google Scholar
Ishii, H.A., Krot, A.N., Bradley, J.P., Keil, K., Nagashima, K., Teslich, N., Jacobsen, B., and Yin, Q.-Z. (2010) Discovery, mineral paragenesis, and origin of wadalite in a meteorite. American Mineralogist, 95, 440–448.10.2138/am.2010.3296Search in Google Scholar
Ivanov, A.V., MacPherson, G.J., Zolensky, M.E., Kononkova, N.N., and Migdisova, L.F. (1996) The Kaidun meteorite: Composition and origin of inclusions in the metal of an enstatite chondrite clast. Meteoritics & Planetary Science, 31, 621–626.10.1111/j.1945-5100.1996.tb02034.xSearch in Google Scholar
Ivanov, A.V., Zolensky, M.E., Saito, A., Ohsumi, K., Yang, S.V., Kononkova, N.N., and Mikouchi, T. (2000) Florenskyite, FeTiP, a new phosphide from the Kaidun meteorite. American Mineralogist, 85, 1082–1086.10.2138/am-2000-0725Search in Google Scholar
Ivanov, A.V., Kononkova, N.N., Yang, V., and Zolensky, M.E. (2003) The Kaidun meteorite: Clasts of alkaline-rich fractionated materials. Meteoritics & Planetary Science, 38, 725–737.10.1111/j.1945-5100.2003.tb00037.xSearch in Google Scholar
Ivanova, M.A., Lorenz, C.A., Ma, C., and Ivanov, A.V. (2016) The Kaidun breccia material variety: New clasts and updated hypothesis on a space trawl origin. Meteoritics & Planetary Science, 51, 6100.Search in Google Scholar
Ivanova, M.A., Ma, C., Lorenz, C.A., Franchi, I.A., Kononkova, N.N. (2019) A new unusual bencubbinite (CBa), Sierra Gorda 013, with unique V-rich sulfides. Meteoritics & Planetary Science, 54, 6149.Search in Google Scholar
Johnson, C.A., and Prinz, M. (1993) Carbonate compositions in CM and CI chondrites and implications for aqueous alteration. Geochimica et Cosmochimica Acta, 57, 2843–2852.10.1016/0016-7037(93)90393-BSearch in Google Scholar
Jones, R.H., McCubbin, F.M., Dreeland, L., Guan, Y., Burger, P.V., and Shearer, C.K. (2014) Phosphate minerals in LL chondrites: A record of the action of fluids during metamorphism on ordinary chondrite parent bodies. Geochimica et Cosmochimica Acta, 132, 120–140.10.1016/j.gca.2014.01.027Search in Google Scholar
Kallemeyn, G.W., Rubin, A.E., and Wasson, J.T. (1994) The compositional classification of chondrites: VI. The CR carbonaceous chondrite group. Geochimica et Cosmochimica Acta, 58, 2873–2888.10.1016/0016-7037(94)90121-XSearch in Google Scholar
Kallemeyn, G.W., Rubin, A.E., and Wasson, J.T. (1996) The compositional classification of chondrites: VII. The R chondrite group. Geochimica et Cosmochimica Acta, 60, 2243–2256.10.1016/0016-7037(96)88430-4Search in Google Scholar
Karwowski, Ł., and Muszyński, A. (2008) Multimineral inclusions in the Morasko coarse octahedrite. Meteoritics & Planetary Science, 43, A71, 5232.Search in Google Scholar
Karwowski, Ł., Kusz, J., Muszyński, A., Kryza, R., Sitarz, M., and Galuskin, E.V. (2015) Moraskoite, Na2Mg(PO4F, a new mineral from the Morasko IAB-MG iron meteorite (Poland). Mineralogical Magazine, 79, 387–398.10.1180/minmag.2015.079.2.16Search in Google Scholar
Kebukawa, Y., Ito, M., Zolensky, M.E., Greenwood, R.C., Rahman, Z., Suga, H., Nakato, A., Chan, Q.H.S., Fries, M., Takeichi, Y., and others (2019) A novel organic-rich meteoritic clast from the outer solar system. Science Reports, 9, 3169, 8 p.10.1038/s41598-019-39357-1Search in Google Scholar PubMed PubMed Central
Keil, K. (1968) Mineralogical and chemical relationships among enstatite chondrites. Journal of Geophysical Research, 73, 6945–6976.10.1029/JB073i022p06945Search in Google Scholar
Keil, K., Berkley, J.L., and Fuchs, L.H. (1982) Suessite, Fe3Si: A new mineral in the North Haig ureilite. American Mineralogist, 67, 126–131.Search in Google Scholar
Keller, L.P., and Buseck, P.R. (1990a) Aqueous alteration in the Kaba CV3 carbonaceous chondrite. Geochimica et Cosmochimica Acta, 54, 2113–2120.10.1016/0016-7037(90)90274-OSearch in Google Scholar
Keller, L.P., and Buseck, P.R. (1990b) Matrix mineralogy of the Lance CO3 carbonaceous chondrite: A transmission electron microscope study. Geochimica et Cosmochimica Acta, 54, 1155–1163.10.1016/0016-7037(90)90446-RSearch in Google Scholar
Keller, L.P., and Buseck, P.R. (1991) Calcic micas in the Allende meteorite: Evidence for hydration reactions in the early solar nebula. Science, 252, 946–949.10.1126/science.252.5008.946Search in Google Scholar
Keller, L.P., and Messenger, S. (2011) On the origins of GEMS grains. Geochimica et Cosmochimica Acta, 75, 5336–5365.10.1016/j.gca.2011.06.040Search in Google Scholar
Keller, L.P., Thomas, K.L., Clayton, R.N., Mayeda, T.K., DeHart, J.M., and McKay, D.S. (1994) Aqueous alteration of the Bali CV3 chondrite: Evidence from mineralogy, mineral chemistry, and oxygen isotopic compositions. Geochimica et Cosmochimica Acta, 58, 5589–5598.10.1016/0016-7037(94)90252-6Search in Google Scholar
Kerridge, J.F. (1970) Meteoritic pyrrhotite. Meteoritics, 5, 149–152.10.1111/j.1945-5100.1970.tb00100.xSearch in Google Scholar
Kerridge, J.F., Macdougall, J.D., and Carlson, J. (1979a) Iron-nickel sulfides in the Murchison meteorite and their relationship to phase Q1. Earth and Planetary Science Letters, 43, 1–4.10.1016/0012-821X(79)90149-3Search in Google Scholar
Kerridge, J.F., Macdougall, J.D., and Marti, K. (1979b) Clues to the origin of sulfide minerals in CI chondrites. Earth and Planetary Science Letters, 43, 359–367.10.1016/0012-821X(79)90091-8Search in Google Scholar
Kessel, R., Beckett, J.R., and Stolper, E.M. (2007) The thermal history of equilibrated ordinary chondrites and the relationship between textural maturity and temperature. Geochimica et Cosmochimica Acta, 71, 1855–1881.10.1016/j.gca.2006.12.017Search in Google Scholar
Khalidi, M.A. (2013) Natural Categories and Human Kinds: Classification in the natural and social sciences. Cambridge University Press.10.1017/CBO9780511998553Search in Google Scholar
Kimura, M., and El Goresy. A. (1989) Discovery of E-chondrite assemblages, SiC, and silica-bearing objects in ALH85085: Link between E- and C-chondrite. Meteoritics, 24, 286.Search in Google Scholar
Kimura, M., and Ikeda, Y. (1992) Mineralogy and petrology of an unusual Belgica-7904 carbonaceous chondrite: Genetic relationships among the components. Proceedings of the NIPR Symposium on Antarctic Meteorites, 5, 74–119.Search in Google Scholar
Kimura, M., and Ikeda, Y. (1995) Anhydrous alteration of Allende chondrules in the solar nebula II: Alkali-Ca exchange reactions and the formation of nepheline, sodalite and Ca-rich phases in chondrules. Proceedings of the NIPR Symposium on Antarctic Meteorites, 8, 123–138.Search in Google Scholar
Kimura, M., and Ikeda, Y. (1996) Comparative study on alteration processes of chondrules in oxidized and reduced CV3 chondrites. Meteoritics & Planetary Science, 31A, 70–71.Search in Google Scholar
Kimura, M., and Ikeda, Y. (1997) Comparative study of anhydrous alteration of chondrules in reduced and oxidized CV chondrites. Antarctic Meteorite Research, 10, 191–202.Search in Google Scholar
Kimura, M., Tsuchiyama, A., Fukuoka, T., and Iimura, Y. (1992) Antarctic primitive achondrites, Yamato-74025, -75300, and -75305: Their mineralogy, thermal history, and the relevance to winonaite. Proceedings of the NIPR Symposium on Antarctic Meteorites, 5, 165–190.Search in Google Scholar
Kimura, M., Weisberg, M.K., Lin, Y., Suzuki, A., Ohtani, E., and Okazaki, R. (2005) Thermal history of the enstatite chondrites from silica polymorphs. Meteoritics & Planetary Science, 40, 855–868.10.1111/j.1945-5100.2005.tb00159.xSearch in Google Scholar
King, T.V.V., and King, E.A. (1981) Accretionary dark rims in unequilibrated ordinary chondrites. Icarus, 48, 460–472.10.1016/0019-1035(81)90056-7Search in Google Scholar
Kleine, T., Budde, G., Hellman, J. L., Kruijer, T.S., and Burkhardt, C. (2018) Tungsten isotopes and the origin of chondrules and chondrites. In S.A. Russell, H.C. Connolly Jr., and A.N. Krot, Eds., Chondrules: Records of protoplanetary disk processes, pp. 276–299. Cambridge University Press.10.1017/9781108284073.010Search in Google Scholar
Kojima, T., Yada, S., and Tomeoka, K. (1995) Ca-Al-rich inclusion in three Antarctic CO3 chondrites, Y-81020, Yamato-82050 and Yamato-790992: Record of low temperature alteration processes. Proceedings of the NIPR Symposium on Antarctic Meteorites, 8, 79–86.Search in Google Scholar
Kornacki, A.S., and Wood, J.A. (1985) The identification of Group II inclusions in carbonaceous chondrites by electron microprobe analysis of perovskite. Earth and Planetary Science Letters, 72, 74–86.10.1016/0012-821X(85)90118-9Search in Google Scholar
Krivovichev, S.V., Krivovichev, V.G., and Hazen, R.M. (2017) Structural and chemical complexity of minerals: Correlations and time evolution. European Journal of Mineralogy, 18, 231–236.10.1127/ejm/2018/0030-2694Search in Google Scholar
Krot, A.N. (2019) Refractory inclusions in carbonaceous chondrites: Records of Early Solar System processes. Meteoritics & Planetary Science, 54, 1647–1691.10.1111/maps.13350Search in Google Scholar PubMed PubMed Central
Krot, A.N., and Wasson, J.T. (1994) Silica-merrihueite/roedderite-bearing chondrules and clasts in ordinary chondrites: New occurrences and possible origin. Meteoritics, 29, 707–718.10.1111/j.1945-5100.1994.tb00788.xSearch in Google Scholar
Krot, A.N., Rubin, A.E., and Kononkova, N.N. (1993) First occurrence of pyrophanite (MnTiO3 and baddeleyite (ZrO2 in an ordinary chondrite. Meteoritics, 28, 232–239.10.1111/j.1945-5100.1993.tb00761.xSearch in Google Scholar
Krot, A.N., Scott, E.R.D., and Zolensky, M.E. (1995) Mineralogical and chemical modification of components in CV3 chondrites: Nebular or asteroidal processing? Meteoritics, 30, 748–775.10.1111/j.1945-5100.1995.tb01173.xSearch in Google Scholar
Krot, A.N., Scott, E.R.D., and Zolensky, M.E. (1997a) Origin of fayalitic olivine rims and lath-shaped matrix olivine in the CV3 chondrite Allende and its dark inclusions. Meteoritics, 32, 31–49.10.1111/j.1945-5100.1997.tb01238.xSearch in Google Scholar
Krot, M.E., Wasson, J.T., Scott, E.R.D., Keil, K., and Ohsumi, K. (1997b) Carbide-magnetite-bearing type 3 ordinary chondrites. Geochimica et Cosmochimica Acta, 61, 219–237.10.1016/S0016-7037(96)00336-5Search in Google Scholar
Krot, A.N., Petaev, M.I., and Bland, P.A. (2004) Multiple formation mechanisms of ferrous olivine in CV3 carbonaceous chondrites during fluid-assisted metamorphism. Antarctic Meteorite Research, 17, 154–172.Search in Google Scholar
Krot, A.N., Hutcheon, I.D., Brearley, A.J., Pravdivtseva, O.V., Petraev, M.I., and Hohenberg, C.M. (2006) Timescales and settings for alteration of chondritic meteorites. In D.S. Lauretta and H.Y. McSween Jr., Eds., Meteorites and the Early Solar System II, pp. 525–553. University of Arizona Press.10.2307/j.ctv1v7zdmm.32Search in Google Scholar
Krot, A.N., Keil, K., Scott, E.R.D., Goodrich, C.A., and Weisberg, M.K. (2014) Classification of meteorites and their genetic relationships. Treatise on Geochemistry, 2nd ed., 1, 2–63.10.1016/B978-0-08-095975-7.00102-9Search in Google Scholar
Krot, A.N., Nagashima, K., Petaev, M.I., and Libourel, G. (2020) Metasomatic alteration of the Allende CAIs: Mineralogy, petrography, and oxygen isotopic compositions. Proceedings of the Lunar and Planetary Science Conference, 51, 1831.Search in Google Scholar
Kurat, G., Palme, H., Brandstätter, F., and Huth, J. (1989) Allende Xenolith AF: Undisturbed record of condensation and aggregation of matter in the Solar Nebula. Zeitschrift für Naturforschung, 44a, 988–1004.10.1515/zna-1989-1011Search in Google Scholar
Lee, M.R. (1993) The petrography, mineralogy and origins of calcium sulphate within the Cold Bokkeveld CM carbonaceous chondrite. Meteoritics, 28, 53–62.10.1111/j.1945-5100.1993.tb00248.xSearch in Google Scholar
Lee, M.R., and Greenwood, R.C. (1994) Alteration of calcium- and aluminum-rich inclusions in the Murray (CM2) carbonaceous chondrite. Meteoritics, 29, 780–790.10.1111/j.1945-5100.1994.tb01093.xSearch in Google Scholar
Lee, M.R., Hutchison, R., and Graham, A.L. (1996) Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite. Meteoritics & Planetary Science, 31, 477–483.10.1111/j.1945-5100.1996.tb02089.xSearch in Google Scholar
Lewis, J.A., and Jones, R.H. (2016) Phosphate and feldspar mineralogy of equilibrated L chondrites: The record of metasomatism during metamorphism in ordinary chondrite parent bodies. Meteoritics & Planetary Science, 51, 1886–1913.10.1111/maps.12719Search in Google Scholar
Libourel, G., Delbo, M., Wilkerason, J., Ganino, C., and Michel, P. (2015) Effects of solar heating on asteroids. Space Weathering of Airless Bodies: An Integration of Remote Sensing Data, Laboratory Experiments and Sample Analysis Workshop. LPI Contribution No. 1878, p. 2005.Search in Google Scholar
Lin, Y.T., and Kimura, M. (1996) Discovery of complex titanium oxide associations in a plagioclase-olivine inclusion (POI) in the Ningqiang carbonaceous chondrite. Lunar and Planetary Science, 27, 755–756.Search in Google Scholar
Litasov, K.D., Ponomarev, D.S., Bazhan, I.S., Ishikawa, A., Podgornykh, N.M., and Pokhilenko, N.P. (2018) Altaite (PbTe) in the Maslyanino iron meteorite with silicate inclusions. Doklady Earth Sciences, 478, 79–81.10.1134/S1028334X18010154Search in Google Scholar
Lovering, J.F., Wark, D.A., and Sewell, D.K.B. (1979) Refractory oxide, titanate, niobate and silicate accessory mineralogy of some type B Ca-Al inclusions in the Allende meteorite. Lunar and Planetary Science, 10, 745–746.Search in Google Scholar
Lunning, N.G., Corrigan, C.M., McSween, H.Y., Tenner, T.J., Kita, N.T., and Bodnar, R.J. (2016) CV and CM chondrite impact melts. Geochimica et Cosmochimica Acta, 189, 338–358.10.1016/j.gca.2016.05.038Search in Google Scholar
Ma, C. (2010) Hibonite-(Fe), (Fe,Mg)Al12O19, a new alteration mineral from the Allende meteorite. American Mineralogist, 95, 188–191.10.2138/am.2010.3365Search in Google Scholar
Ma, C., and Beckett, J.R. (2016) Majindeite, Mg2Mo3O8, a new mineral from the Allende meteorite and a witness to post-crystallization oxidation of a Ca-Al-rich refractory inclusion. American Mineralogist, 101, 1161–1170.10.2138/am-2016-5399Search in Google Scholar
Ma, C., and Beckett, J.R. (2018) Nuwaite (Ni6GeS2 and butianite (Ni6SnS2 two new minerals from the Allende meteorite: Alteration products in the early solar system. American Mineralogist, 103, 1918–1924.10.2138/am-2018-6599Search in Google Scholar
Ma, C., and Krot, A.N. (2014) Hutcheonite, Ca3Ti2(SiAl2O12, a new garnet mineral from the Allende meteorite: An alteration phase in a Ca-Al-rich inclusion. American Mineralogist, 99, 667–670.10.2138/am.2014.4761Search in Google Scholar
Ma, C., and Krot, A.N. (2018) Adrianite, Ca12(Al4Mg3Si7O32Cl6, a new Cl-rich silicate mineral from the Allende meteorite: An alteration phase in a Ca-Al-rich inclusion. American Mineralogist, 103, 1329–1334.10.2138/am-2018-6505Search in Google Scholar PubMed PubMed Central
Ma, C., Connolly, H.C., Beckett, J.R., Tschauner, O., Rossman, G.R., Kampf, A.R., Zega, T.J., Smith, S.A.S., and Schrader, D.L. (2011a) Brearleyite, Ca12Al14O32Cl2, a new alteration mineral from the NWA 1934 meteorite. American Mineralogist, 96, 1199–1206.10.2138/am.2011.3755Search in Google Scholar
Ma, C., Beckett, J.R. and Rossman, G.R. (2011b) Murchisite, Cr5S6, a new mineral from the Murchison meteorite. American Mineralogist, 96, 1905–1908.10.2138/am.2011.3858Search in Google Scholar
Ma, C., Krot, A.N., and Bizzarro, M. (2013) Discovery of dmisteinbergite (hexagonal CaAl2Si2O8 in the Allende meteorite: A new member of refractory silicates formed in the solar nebula. American Mineralogist, 98, 1368–1371.10.2138/am.2013.4496Search in Google Scholar
Ma, C., Beckett, J.R., and Rossman, G.R. (2014) Monipite, MoNiP, a new phosphide mineral in a Ca-Al-rich inclusion from the Allende meteorite. American Mineralogist, 99, 198–205.10.2138/am.2014.4512Search in Google Scholar
Ma, C., Paque, J.M., and Tschauner, O. (2016) Discovery of beckettite, Ca2V6Al6O20, a new alteration mineral in a V-rich Ca-Al-rich inclusion from Allende. Lunar and Planetary Science, 47, 1704.Search in Google Scholar
Mackinnon, I.D.R. (1980) Structures and textures of the Murchison and Mighei carbonaceous chondrite matrices. Proceedings of the Lunar and Planetary Science Conference, 11, 839–852.Search in Google Scholar
Mackinnon, I.D.R., and Zolensky, M.E. (1984) Proposed structures for poorly characterized phases in C2M carbonaceous chondrite meteorites. Nature, 309, 240–242.10.1038/309240a0Search in Google Scholar
MacPherson, G.J., and Davis, A.M. (1994) Refractory inclusions in the prototypical CM chondrite, Mighei. Geochimica et Cosmochimica Acta, 58, 5599–5625.10.1016/0016-7037(94)90253-4Search in Google Scholar
MacPherson, G.J., and Grossman, L. (1984) “Fluffy” Type A Ca,-Al-rich inclusions in the Allende meteorite. Geochimica et Cosmochimica Acta, 48, 29–46.10.1016/0016-7037(84)90347-8Search in Google Scholar
MacPherson, G.J., Grossman, L., Allen, J.M., and Beckett, J.R. (1981) Origin of rims on coarse-grained inclusions in the Allende meteorite. Proceedings of the Lunar and Planetary Science Conference, 12B, 1079–1091.Search in Google Scholar
MacPherson, G.J., Bar-Matthews, M., Tanaka, T., Olsen, E., and Grossman, L. (1983) Refractory inclusions in the Murchison meteorite. Geochimica et Cosmochimica Acta, 47, 823–839.10.1016/0016-7037(83)90116-3Search in Google Scholar
MacPherson, G.J., Grossman, L., Hashimoto, A., Bar-Matthews, M., and Tanaka, T. (1984) Petrographic studies of refractory inclusions from the Murchison meteorite. Proceedings of the Lunar and Planetary Science Conference, 15, C299–C312.10.1029/JB089iS01p0C299Search in Google Scholar
MacPherson, G.J., Wark, D.A., and Armstrong, J.T. (1988) Primitive material surviving in chondrites: Refractory inclusions. In J.F. Kerridge and M.S. Matthews, Eds., Meteorites and the Early Solar System, pp.746–807. University of Arizona Press.Search in Google Scholar
MacPherson, G.J., Nagashima, K., Krot, A.N., Doyle, P.M., and Ivanova, M.A. (2017) 53Mn-53Cr chronology of Ca-Fe silicates in CV3 chondrites. Geochimica et Cosmochimica Acta, 201, 260–274.10.1016/j.gca.2016.09.032Search in Google Scholar
Magnus, P.D. (2012) Scientific Enquiry and Natural Kinds: From Mallards to Planets. Palgrave MacMillan.10.1057/9781137271259Search in Google Scholar
Mao, X.-Y., Ward, B.J., Grossman, L., and MacPherson, G.J. (1990) Chemical composition of refractory inclusions from the Vigarano and Leoville carbonaceous chondrites. Geochimica et Cosmochimica Acta, 54, 2121–2132.10.1016/0016-7037(90)90275-PSearch in Google Scholar
Marrocchi, Y., Gounelle, M., Blanchard, I., Caste, F., and Kearsley, A.T. (2014) The Paris CM chondrite: Secondary minerals and asteroidal processing. Meteoritics & Planetary Science, 49, 1232–1249.10.1111/maps.12329Search in Google Scholar
Marvin, U.B., Wood, J.A., and Dickey, J.S. Jr. (1970) Ca-Al-rich phases in the Allende meteorite. Earth and Planetary Science Letters, 7, 346–350.10.1016/0012-821X(69)90048-XSearch in Google Scholar
Matsunami, S., Nishimura, H., and Takeshi, H. (1990) The chemical compositions and textures of matrices and chondrule rims of unequilibrated ordinary chondrites-II. Their constituents and implications for the formation of matrix olivine. Proceedings of the NIPR Symposium on Antarctic Meteorites, 3, 147–180.Search in Google Scholar
McCanta, M.C., Treiman, A.H., Dyar, M.D., Alexander, C.M.O., Rumble, D. III, and Essene, E.J. (2008) The LaPaz Icefield 04840 meteorite: Mineralogy, metamorphism, and origin of an amphibole- and biotite-bearing R chondrite. Geochimica et Cosmochimica Acta, 72, 5757–5780.10.1016/j.gca.2008.07.034Search in Google Scholar
McCoy, T.J., Scott, E.R.D., Jones, R.H., Keil, K., and Taylor, G.J. (1991) Composition of chondrule silicates in LL3-5 chondrites and implications for their nebular history and parent body metamorphism. Geochimica et Cosmochimica Acta, 55, 601–619.10.1016/0016-7037(91)90015-WSearch in Google Scholar
McCoy, T.J., Steele, I.M., Keil, K., Leonard, B.F., and Endress, M. (1994) Chladniite, Na2CaMg7(PO46: A new mineral from the Carlton (IIICD) iron meteorite. American Mineralogist, 79, 375–380.Search in Google Scholar
McCoy, T.J., Carlson, W.D., Nittler, L.R., Stroud, R.M., Bogard, D.D., and Garrison, D.H. (2006) Graves Nunataks 95209: A snapshot of metal segregation and core formation. Geochimica et Cosmochimica Acta, 70, 516–531.10.1016/j.gca.2005.09.019Search in Google Scholar
McGuire, A. V., and Hashimoto, A. (1989) Origin of zoned fine-grained inclusions in the Allende meteorite. Geochimica et Cosmochimica Acta, 53, 1123–1133.10.1016/0016-7037(89)90218-4Search in Google Scholar
McSween, H.Y. Jr. (1976) A new type of chondritic meteorite found in lunar soil. Earth and Planetary Science Letters, 31, 193–199.10.1016/0012-821X(76)90211-9Search in Google Scholar
McSween, H.Y. Jr. (1977) Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochimica et Cosmochimica Acta, 41, 1777–1790.10.1016/0016-7037(77)90210-1Search in Google Scholar
McSween, H.Y. Jr. (1979) Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix. Geochimica et Cosmochimica Acta, 43, 1761–1770.10.1016/0016-7037(79)90024-3Search in Google Scholar
McSween, H.Y. Jr., and Patchen, A.D. (1989) Pyroxene thermobarometry in LL-group chondrites and implications for parent body metamorphism. Meteoritics, 24, 219–226.10.1111/j.1945-5100.1989.tb00696.xSearch in Google Scholar
McSween, H.Y. Jr., Sears, D.W.G., and Dodd, R.T. (1988) Thermal metamorphism. In J.F. Kerridge and M.S. Matthews, Eds., Meteorites and the Early Solar System, pp. 102–113. University of Arizona Press.Search in Google Scholar
Menzies, O.N., Bland, P.A., Berry, F. J., and Cressey, G. (2005) A Mossbauer spectroscopy and X-ray diffraction study of ordinary chondrites: Quantification of modal mineralogy and implications for redox conditions during metamorphism. Meteoritics & Planetary Science, 40, 1023–1042.10.1111/j.1945-5100.2005.tb00171.xSearch in Google Scholar
Mikouchi, T., Hagiya, K., Sawa, N., Kimura, M., Ohsaumi, K., Komatsu, M., and Zolensky, M. (2016) Synchrotron radiation XRD analysis of indialite in Yamato-82094 ungrouped carbonaceous chondrite. Proceedings of the 47th Lunar and Planetary Science Conference, no. 1919.Search in Google Scholar
Mills, S.J., Hatert, F., Nickel, E.H., and Ferrais, G. (2009) The standardization of mineral group hierarchies: Application to recent nomenclature proposals. European Journal of Mineralogy, 21, 1073–1080.10.1127/0935-1221/2009/0021-1994Search in Google Scholar
Mittlefehldt, D.W. (2014) Achondrites. Treatise on Geochemistry, 2nd ed., 1, 235–266.10.1016/B978-0-08-095975-7.00108-XSearch in Google Scholar
Mittlefehldt, D.W., McCoy, T.J., Goodrich, C.A., and Kracher, A. (1998) Non-chondritic meteorites from asteroidal bodies. Reviews in Mineralogy, 36, 4.1–4.195.Search in Google Scholar
Morrison, S.M., and Hazen, R.M. (2020) An evolutionary system of mineralogy. Part II: Interstellar and solar nebula primary condensation mineralogy (>4.565 Ga). American Mineralogist, 105, 1508–1535.Search in Google Scholar
Morrison, S.M., and Hazen, R.M. (2021) An evolutionary system of mineralogy, Part IV: Planetesimal differentiation and impact mineralization (4566 to 4560 Ma). American Mineralogist, 106, 730–761.10.2138/am-2021-7632Search in Google Scholar
Müller, W.F., Kurat, G., and Kracher, A. (1979) Chemical and crystallographic study of cronstedtite in the matrix of the Cochabamba (CM2) carbonaceous chondrite. Tschermaks Mineralogische und Petrographische Mitteilungen, 26, 293–304.10.1007/BF01089843Search in Google Scholar
Murakami, T., and Ikeda, Y. (1994) Petrology and mineralogy of the Yamato-86751 CV3 chondrite. Meteoritics, 29, 397–409.10.1111/j.1945-5100.1994.tb00604.xSearch in Google Scholar
Nagy, B., and Andersen, C.A. (1964) Electron probe microanalysis of some carbonate, sulfate and phosphate minerals in the Orgueil meteorite. American Mineralogist, 49, 1730–1736.Search in Google Scholar
Nakamura, T., and Nakamuta, Y. (1996) X-ray study of PCP from the Murchison CM carbonaceous chondrite. Proceedings of the NIPR Symposium on Antarctic Meteorites, 9, 37–50.Search in Google Scholar
Nakamura-Messenger, K., Clemett, S.J., Rubin, A.E., Choi, B.-G., Zhang, S., Rahman, Z., Oikawa, K., and Keller, L.P. (2012) Wassonite: A new titanium monosulfide mineral in the Yamato 691 enstatite chondrite. American Mineralogist, 97, 807–815.10.2138/am.2012.3946Search in Google Scholar
Nazarov, M.A., Kurat, G., Brandstätter, F., Ntaflos, T., Chaussidon, M., and Hoppe, P. (2009) Phosphorus-bearing sulfides and their associations in CM chondrites. Petrology, 17, 101–123.10.1134/S0869591109020015Search in Google Scholar
Noguchi, T. (1993) Petrology and mineralogy of CK chondrites: Implications for the metamorphism of the CK chondrite parent body. Proceedings of the NIPR Symposium on Antarctic Meteorites, 6, 204–233.Search in Google Scholar
Noguchi, T. (1994) Petrology and mineralogy of the Coolidge meteorite (CV4). Proceedings of the NIPR Symposium on Antarctic Meteorites, 7, 42–72.Search in Google Scholar
Nyström, J.O., and Wickman, F.E. (1991) The Ordovician chondrite from Brunflo, central Sweden, II. Secondary minerals. Lithos, 27, 167–185.10.1016/0024-4937(91)90011-9Search in Google Scholar
Okada, A., Keil, K., and Taylor. G.J. (1981) Unusual weathering products of oldhamite parentage in the Norton County enstatite achondrite. Meteoritics, 16, 141–152.10.1111/j.1945-5100.1981.tb00539.xSearch in Google Scholar
Olsen, E., and Steele, I. (1993) New alkali phosphates and their associations in the IIIAB iron meteorites. Meteoritics, 28, 415.Search in Google Scholar
Olsen, E., Huebner, J.S., Douglas, J.A., and Plant, A.G. (1973) Meteoritic amphiboles. American Mineralogist, 62, 869–872.Search in Google Scholar
Palmer, E.E., and Lauretta, D.S. (2011) Aqueous alteration of kamacite in CM chondrites. Meteoritics & Planetary Science, 46, 1587–1607.10.1111/j.1945-5100.2011.01251.xSearch in Google Scholar
Park, C., Nagashima, K., Ma, C., Krot, A.N., and Bizzarro, M. (2013) Two generations of hexagonal CaAl2Si2O8 (dmisteinbergite) in the type B2 FUN CAI STP-1. Meteoritics & Planetary Sciences, 48, Supplement, 5048.Search in Google Scholar
Pederson, T.P. (1999) Schwertmannite and awaruite as alteration products in iron meteorites. Meteoritics, 62, 5117.Search in Google Scholar
Pekov, I.V., Perchiazzi, N., Merlino, S., Kalachev, V.N., Merlini, M., and Zadov, A.E. (2007) Chukanovite, Fe2(CO3(OH)2, a new mineral from the weathered iron meteorite Dronino. European Journal of Mineralogy, 19, 891–898.10.1127/0935-1221/2007/0019-1767Search in Google Scholar
Piani, L., Robert, F., Beyssac, O., Binet, L., Bourot-Denise, M., Derenne, S., Le Guillou, C., Marrouchi, Y., Mostefaoui, S., Rouzaud, J.-N., and Thomen, A. (2012) Structure, composition, and location of organic matter in the enstatite chondrite Sahara 97096 (EH3). Meteoritics & Planetary Science, 47, 8–29.10.1111/j.1945-5100.2011.01306.xSearch in Google Scholar
Pignatelli, I., Marrocchi, Y., Vacher, L.G., Delon, R., and Gounelle, M. (2016) Multiple precursors of secondary mineralogical assemblages in CM chondrites. Meteoritics & Planetary Science, 51, 785–805.10.1111/maps.12625Search in Google Scholar
Pratesi, G., Bindi, L., and Moggi-Cecchi, V. (2006) Icosahedral coordination of phosphorus in the crystal structure of melliniite, a new phosphide mineral from the Northwest Africa 1054 acapulcoite. American Mineralogist, 91, 451–454.10.2138/am.2006.2095Search in Google Scholar
Prinz, M., Nehru, C.E., and Delaney, J.S. (1982) Sombrerete: An iron with highly fractionated amphibole-bearing Na-P-rich silicate inclusions. Lunar and Planetary Science, 13, 634–635.Search in Google Scholar
Prinz, M., Weisberg, M.K., and Nehru, C.E. (1994) LEW88774: A new type of Cr-rich ureilite. Lunar and Planetary Science, 25, 1107–1108.Search in Google Scholar
Rambaldi, E.R., and Wasson, J.T. (1982) Fine, nickel-poor Fe-Ni grains in the olivine of unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta, 46, 929–939.10.1016/0016-7037(82)90049-7Search in Google Scholar
Rambaldi, E.R., Rajan, R.S., Housley, R.M., and Wang, D. (1986a) Gallium-bearing sphalerite in metal-sulfide nodules of the Qingzhen (EH3) chondrite. Meteoritics, 21, 23–32.10.1111/j.1945-5100.1986.tb01223.xSearch in Google Scholar
Rambaldi, E.R., Rajan, R.S., Housley, R.M., and Wang, D. (1986b) Roedderite in the Qingzhen (EH3) chondrite. Meteoritics, 21, 141–149.10.1111/j.1945-5100.1986.tb01234.xSearch in Google Scholar
Ramdohr, P. (1973) The Opaque Minerals in Stony Meteorites. Akademie-Verlag.Search in Google Scholar
Richardson, S.M. (1978) Vein formation in the C1 carbonaceous chondrites. Meteoritics, 13, 141–159.10.1111/j.1945-5100.1978.tb00803.xSearch in Google Scholar
Richardson, S.M., and McSween, H.Y. Jr. (1978) Textural evidence bearing on the origin of isolated olivine crystals in C2 carbonaceous chondrites. Earth and Planetary Science Letters, 37, 485–491.10.1016/0012-821X(78)90064-XSearch in Google Scholar
Riciputi, L.R., McSween, H.Y. Jr., Johnson, C.A., and Prinz, M. (1994) Minor and trace element concentrations in carbonates of carbonaceous chondrites, and implications for the compositions of coexisting fluids. Geochimica et Cosmochimica Acta, 58, 1343–1351.10.1016/0016-7037(94)90386-7Search in Google Scholar
Rietmeijer, F.J.M. (1999) Interplanetary dust particles. Reviews in Mineralogy, 36, 2-001–2-096.Search in Google Scholar
Rubin, A.E. (1983) The Adhi Kot breccia and implications for the origin of chondrites and silica-rich clasts in enstatite chondrites. Earth and Planetary Science Letters, 64, 201–212.10.1016/0012-821X(83)90204-2Search in Google Scholar
Rubin, A.E. (1990) Kamacite and olivine in ordinary chondrites: Intergroup and intragroup relationships. Geochimica et Cosmochimica Acta, 54, 1217–1232.10.1016/0016-7037(90)90148-ESearch in Google Scholar
Rubin, A.E. (1991) Euhedral awaruite in the Allende meteorite: Implications for the origin of awaruite- and magnetite-bearing nodules in CV3 chondrites. American Mineralogist, 76, 1356–1362.Search in Google Scholar
Rubin, A.E. (1994) Euhedral tetrataenite in the Jelica meteorite. Mineralogical Magazine, 58, 215–221.10.1180/minmag.1994.058.391.04Search in Google Scholar
Rubin, A.E. (1997) Mineralogy of meteorite groups. Meteoritics & Planetary Science, 32, 231–247.10.1111/j.1945-5100.1997.tb01262.xSearch in Google Scholar
Rubin, A.E. (2005) Relationships among intrinsic properties of ordinary chondrites: Oxidation state, bulk chemistry, oxygen-isotopic composition, petrologic type, and chondrule size. Geochimica et Cosmochimica Acta, 69, 4907–4918.10.1016/j.gca.2005.06.017Search in Google Scholar
Rubin, A.E., and Grossman, J. N. (1985) Phosphate-sulfide assemblages and Al/Ca ratios in type 3 chondrites. Meteoritics, 20, 479–489.10.1111/j.1945-5100.1985.tb00044.xSearch in Google Scholar
Rubin, A.E., and Kallemeyn, G.W. (1989) Carlisle Lakes and Allan Hills 85151: Members of a new chondrite grouplet. Geochimica et Cosmochimica Acta, 53, 3035–3044.10.1016/0016-7037(89)90179-8Search in Google Scholar
Rubin, A.E., and Kallemeyn, G.W. (1994) Pecora Escarpment 91002: A member of the new Rumuruti (R) chondrite group. Meteoritics, 29, 255–264.10.1111/j.1945-5100.1994.tb00679.xSearch in Google Scholar
Rubin, A.E., and Ma, C. (2017) Meteoritic minerals and their origins. Chemie der Erde, 77, 325–385.10.1016/j.chemer.2017.01.005Search in Google Scholar
Rubin, A.E., and Ma, C. (2021) Meteorite Mineralogy. Cambridge University Press.10.1017/9781108613767Search in Google Scholar
Rubin, A.E., Zolensky, M.E., and Bodnar, R.J. (2002) The halite-bearing Zag and Monahans (1998) meteorite breccias: Shock metamorphism, thermal metamorphism and aqueous alteration on the H-chondrite parent body. Meteoritics & Planetary Science, 37, 125–141.10.1111/j.1945-5100.2002.tb00799.xSearch in Google Scholar
Rubin, A.E., Trigo-Rodríguez, J.M., Huber, H., and Wasson, J.T. (2007) Progressive aqueous alteration of CM carbonaceous chondrites. Geochimica et Cosmochimica Acta, 71, 2361–2382.10.1016/j.gca.2007.02.008Search in Google Scholar
Russell, S.A., Connelly, H.C., and Krot, A.N., Eds. (2018) Chondrules: Records of protoplanetary disk processes, 450 p. Cambridge University Press.10.1017/9781108284073Search in Google Scholar
Ruzicka, A. (2014) Silicate-bearing iron meteorites and their implications for the evolution of asteroidal parent bodies. Chemie der Erde, 74, 3–48.10.1016/j.chemer.2013.10.001Search in Google Scholar
Saini-Eidukat, B., Kucha, H., and Keppler, H. (1994) Hibbingite, γ-Fe2(OH)3Cl, a new mineral from the Duluth Complex, Minnesota, with implications for the oxidation of Fe-bearing compounds and transport of metals. American Mineralogist, 79, 555–561.Search in Google Scholar
Schertl, H.-P., Mills, S.J., and Maresch, W.V., Eds. (2018) A Compendium of IMA-Approved Mineral Nomenclature. International Mineralogical Association.Search in Google Scholar
Schmitz, B., Yin, Q.Z., Sanborn, M.E., Tassinari, M., Caplan, C.E., and Huss, G.R. (2016) A new type of solar-system material recovered from Ordovician marine limestone. Nature Communications, 7, ncomms11851.10.1038/ncomms11851Search in Google Scholar
Schulze, H. (1998) Noble metal phases in Rumuruti-chondrites. Meteoritics & Planetary Science, 33, Supplement, A139.Search in Google Scholar
Schulze, H., Bischoff, A., Palme, A., Spettel, B., Dreibus, G., and Otto, J. (1994) Mineralogy and chemistry of Rumuruti: The first meteorite fall of the new R chondrite group. Meteoritics, 29, 275–286.10.1111/j.1945-5100.1994.tb00681.xSearch in Google Scholar
Scott, E.R.D. (1988) A new kind of primitive chondrite, Allan Hills 85085. Earth and Planetary Science Letters, 91, 1–18.10.1016/0012-821X(88)90147-1Search in Google Scholar
Scott, E.R.D., and Jones, R.H. (1990) Disentangling nebular and asteroidal features of CO3 carbonaceous chondrites. Geochimica et Cosmochimica Acta, 54, 2485–2502.10.1016/0016-7037(90)90235-DSearch in Google Scholar
Scott, E.R.D., and Rajan, S. (1981) Metallic minerals, thermal histories, and parent bodies of some xenolithic ordinary chondrites. Geochimica et Cosmochimica Acta, 45, 53–67.10.1016/0016-7037(81)90263-5Search in Google Scholar
Scott, E.R.D., Jones, R.H., and Rubin, A.E. (1994) Classification, metamorphic history, and pre-metamorphic composition of chondrules. Geochimica et Cosmochimica Acta, 58, 1203–1209.10.1016/0016-7037(94)90582-7Search in Google Scholar
Sears, D.W.G., and Dodd, R.T. (1988) Overview and classification of meteorites. In J.F. Kerridge and M.S. Matthews, Eds., Meteorites and the Early Solar System, pp. 3–31. University of Arizona Press.Search in Google Scholar
Sears, D.W.G., and Hasan, F.A. (1987) The type three ordinary chondrites: A review. Surveys in Geophysics, 9, 43–97.10.1007/BF01903400Search in Google Scholar
Sears, D.W.G., Grossman, J.N., Melcher, C.L., Ross, L.M., and Mills, A.A. (1980) Measuring metamorphic history of unequilibrated ordinary chondrites. Nature, 287, 791–795.10.1038/287791a0Search in Google Scholar
Sears, D.W.G., Morse, A.D., Hutchison, R., Guimon, R.K., Lu, J., Alexander, C.M.O., Benoit, P.H., Wright, I., Pillinger, C., Xie, T., and Lipschutz, M.E. (1995) Metamorphism and aqueous alteration in low petrographic type ordinary chondrites. Meteoritics, 30, 169–181.10.1111/j.1945-5100.1995.tb01112.xSearch in Google Scholar
Sheng, Y.J., Hutcheon, I.D., and Wasserburg, G.J. (1991) Origin of plagioclase-olivine inclusions in carbonaceous chondrites. Geochimica et Cosmochimica Acta, 55, 581–599.10.1016/0016-7037(91)90014-VSearch in Google Scholar
Simon, S.B., and Grossman, L. (1992) Low temperature exsolution in refractory siderophile element-rich opaque assemblages from the Leoville carbonaceous chondrite. Earth and Planetary Science Letters, 110, 67–75.10.1016/0012-821X(92)90039-XSearch in Google Scholar
Simon, S.B., Davis, A.M., and Grossman, L. (2001) Formation of orange hibonite, as inferred from some Allende inclusions. Meteoritics & Planetary Science, 36, 331–350.10.1111/j.1945-5100.2001.tb01877.xSearch in Google Scholar
Simon, S.B., Sutton, S.R., and Grossman, L. (2016) The valence and coordination of titanium in ordinary and enstatite chondrites. Geochimica et Cosmochimica Acta, 189, 377–390.10.1016/j.gca.2016.06.013Search in Google Scholar
Snetsinger, K.G., and Keil, K. (1969) Ilmenite in ordinary chondrites. American Mineralogist, 54, 780–786.Search in Google Scholar
Steele, I.M. (1995) Mineralogy of a refractory inclusion in the Allende (C3V) meteorite. Meteoritics, 30, 9–14.10.1111/j.1945-5100.1995.tb01205.xSearch in Google Scholar
Stöffler, D., Keil, K., and Scott, E.R.D. (1991) Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta, 55, 3845–3867.10.1016/0016-7037(91)90078-JSearch in Google Scholar
Stöffler, D., Hamann, C., and Metzler, K. (2018) Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system. Meteoritics & Planetary Science, 53, 5–49.10.1111/maps.12912Search in Google Scholar
Sylvester, P.J., Simon, S.B., and Grossman, L. (1993) Refractory inclusions from the Leoville, Efremovka, and Vigarano C3V chondrites: Major element differences between Types A and B, and extraordinary refractory siderophile element compositions. Geochimica et Cosmochimica Acta, 57, 3763–3784.10.1016/0016-7037(93)90154-OSearch in Google Scholar
Takir, D., Emery, J.P., McSween, H.Y. Jr., Hibbitts, C.A., Clark, R.N., Pearson, N., and Wang, A. (2013) Nature and degree of aqueous alteration in CM and CI chondrites. Meteoritics & Planetary Science, 1–20.10.1111/maps.12171Search in Google Scholar
Taylor, G.J., Okada, A., Scott, E.R.D., Rubin, A.E., Huss, G.R., and Keil, K. (1981) The occurrence and implications of carbide-magnetite assemblages in unequilibrated ordinary chondrites. Lunar and Planetary Science, 12, 1076–1078.Search in Google Scholar
Tomeoka, K., and Buseck, P.R. (1982a) An unusual layered mineral in chondrules and aggregates of the Allende carbonaceous chondrite. Nature, 299, 327–329.10.1038/299327a0Search in Google Scholar
Tomeoka, K., and Buseck, P.R. (1982b) Intergrown mica and montmorillonite in the Allende carbonaceous chondrite. Nature, 299, 326–327.10.1038/299326a0Search in Google Scholar
Tomeoka, K., and Buseck, P.R. (1985) Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O and Ni. Geochimica et Cosmochimica Acta, 49, 2149–2163.10.1016/0016-7037(85)90073-0Search in Google Scholar
Tomeoka, K., and Buseck, P.R. (1988) Matrix mineralogy of the Orgueil CI carbonaceous chondrite. Geochimica et Cosmochimica Acta, 52, 1627–1640.10.1016/0016-7037(88)90231-1Search in Google Scholar
Tomeoka, K., and Buseck, P.R. (1990) Phyllosilicates in the Mokoia CV carbonaceous chondrite: Evidence for aqueous alteration in an oxidizing condition. Geochimica et Cosmochimica Acta, 54, 1787–1796.10.1016/0016-7037(90)90405-ASearch in Google Scholar
Tomeoka, K., McSween, H. Y. Jr., and Buseck, P.R. (1989a) Mineralogical alteration of CM carbonaceous chondrites: a review. Proceedings of the NIPR Symposium on Antarctic Meteorites, 2, 221–234.Search in Google Scholar
Tomeoka, K., Kojima, H., and Yanai, K. (1989b) Yamato-82162: A new kind of CI carbonaceous chondrite found in Antarctica. Proceedings of the NIPR Symposium on Antarctic Meteorites, 2, 36–54.Search in Google Scholar
Tomeoka, K., Kojima, H., and Yanai, K. (1989c) Yamato-86720: A CM carbonaceous chondrite having experienced extensive aqueous alteration and thermal metamorphism. Proceedings of the NIPR Symposium on Antarctic Meteorites, 2, 55–74.Search in Google Scholar
Tomeoka, K., Nomura, K., and Takeda, H. (1992) Na-bearing Ca-Al-rich inclusions in the Yamato-791717 CO carbonaceous chondrite. Meteoritics, 27, 136–143.10.1111/j.1945-5100.1992.tb00740.xSearch in Google Scholar
Tonui, E., Zolensky, M.E., Hiroi, T., Nakamura, T., Lipschutz, M.E., Wang, M.-S., and Okudaira, K. (2014) Petrographic, chemical and spectroscopic evidence for thermal metamorphism in carbonaceous chondrites I. CI and CM chondrites. Geochimica et Cosmochimica Acta, 126, 284–306.10.1016/j.gca.2013.10.053Search in Google Scholar
Ulyanov, A.A. (1991) The meteorite minerals. 14th Brown-Vernadsky Microsymposium on Comparative Planetology.Search in Google Scholar
Vacher, L.G., Truche, L., Faure, F., Tissandier, L., Mosser-Ruck, R., and Marrocchi, Y. (2019) Deciphering the conditions of tochilinite and cronstedtite formation in CM chondrites from low temperature hydrothermal experiments. Meteoritics & Planetary Science, 54, 1870–1889.10.1111/maps.13317Search in Google Scholar
Van Schmus, W.R., and Wood, J.A. (1967) A chemical-petrologic classification for the chondrite meteorites. Geochimica et Cosmochimica Acta, 31, 747–754.10.1016/S0016-7037(67)80030-9Search in Google Scholar
Varela, M.E., Zinner, E., Kurat, G., Chu, H.-T., and Hoppe, P. (2012) New insights into the formation of fayalitic olivine from Allende dark inclusions. Meteoritics & Planetary Science, 47, 832–852.10.1111/j.1945-5100.2012.01359.xSearch in Google Scholar
Veblen, D.R., and Buseck, P.R. (1979) Serpentine minerals: Intergrowths and new combination structures. Science, 206, 1398–1400.10.1126/science.206.4425.1398Search in Google Scholar
Velbel, M.A. (1988) The distribution and significance of evaporitic weathering products on Antarctic meteorites. Meteoritics, 23, 151–159.10.1111/j.1945-5100.1988.tb00910.xSearch in Google Scholar
Wark, D.A. (1986) Evidence for successive episodes of condensation at high temperatures in a part of the solar nebula. Earth and Planetary Science Letters, 77, 129–148.10.1016/0012-821X(86)90155-XSearch in Google Scholar
Wark, D.A. (1987) Plagioclase-rich inclusions in carbonaceous chondrite meteorites: Liquid condensates? Geochimica et Cosmochimica Acta, 51, 221–242.10.1016/0016-7037(87)90234-1Search in Google Scholar
Wark, D.A., Boynton, W.V., Keays, R.R., and Palme, H. (1987) Trace element and petrologic clues to the formation of forsterite-bearing Ca-Al-rich inclusions in the Allende meteorite. Geochimica et Cosmochimica Acta, 51, 607–622.10.1016/0016-7037(87)90073-1Search in Google Scholar
Wasson, J.T., and Krot, A.N. (1994) Fayalite-silica association in unequilibrated ordinary chondrites: Evidence for aqueous alteration on a parent body. Earth and Planetary Science Letters, 122, 403–416.10.1016/0012-821X(94)90011-6Search in Google Scholar
Wasson, J.T., Rubin, A.E., and Kallemeyn, G.W. (1993) Reduction during metamorphism of four ordinary chondrites. Geochimica et Cosmochimica Acta, 57, 1867–1878.10.1016/0016-7037(93)90118-GSearch in Google Scholar
Weinbruch, S., Palme, H., Müller, W.F., and EI Goresy, A. (1990) FeO-rich rims and veins in Allende forsterite: Evidence for high temperature condensation at oxidizing conditions. Meteoritics, 25, 115–125.10.1111/j.1945-5100.1990.tb00983.xSearch in Google Scholar
Weinbruch, S., Armstrong, J.T., and Palme, H. (1994) Constraints on the thermal history of the Allende parent body as derived from olivine-spinel thermometry and Fe/Mg interdiffusion in olivine. Geochimica et Cosmochim Acta, 58, 1019–1030.10.1016/0016-7037(94)90523-1Search in Google Scholar
Weisberg, M.K., Prinz, M., Clayton, R.N., and Mayeda, T.K. (1993) The CR (Renazzo-type) carbonaceous chondrite group and its implications. Geochimica et Cosmochimica Acta, 57, 1567–1586.10.1016/0016-7037(93)90013-MSearch in Google Scholar
Wittmann, A., Friedrich, J.M., Troiano, J., Macke, R.J., Britt, D.T., Swindle, T.D., Weirich, J.R., Rumble, D., Lasue, J., and Kring, D.A. (2011) H/L chondrite LaPaz Icefield 031047—A feather of Icarus? Geochimica et Cosmochimica Acta, 75, 6140–6159.10.1016/j.gca.2011.07.037Search in Google Scholar
Wlotzka, F. (1972) Haverö ureilite: Evidence for recrystallization and partial reduction. Meteoritics, 7, 591–600.10.1111/j.1945-5100.1972.tb00141.xSearch in Google Scholar
Wlotzka, F. (1993) A weathering scale for the ordinary chondrites. Meteoritics, 28, 460.Search in Google Scholar
Wlotzka, F. (2005) Cr spinel and chromite as petrogenetic indicators in ordinary chondrites: Equilibration temperatures of petrologic types 3.7 to 6. Meteoritics & Planetary Science, 40, 1673–1702.10.1111/j.1945-5100.2005.tb00138.xSearch in Google Scholar
Wlotzka, F., and Wark, D.A. (1982) The significance of zeolites and other hydrous alteration products in Leoville Ca-Al-rich inclusions. Lunar and Planetary Science, 13, 869–870.Search in Google Scholar
Yagi, K., Lovering, J.F., Shima, M., and Okada, A. (1978) Petrology of the Yamato meteorites (j), (k), (l), and (m) from Antarctica. Meteoritics, 13, 23–45.10.1111/j.1945-5100.1978.tb00797.xSearch in Google Scholar
Zanda, B., Bourot-Denise, M., Perron, C., and Hewins, R.H. (1994) Origin and metamorphic redistribution of silicon, chromium, and phosphorus in the metal of chondrites. Science, 265, 1846–1849.10.1126/science.265.5180.1846Search in Google Scholar
Zinner, E.K., Caillet, C., and El Goresy, A. (1991) Evidence for extraneous origin of magnesiowüstite-metal Fremdling from the Vigarano CV3 chondrite. Earth and Planetary Science Letters, 102, 252–264.10.1016/0012-821X(91)90021-9Search in Google Scholar
Zolensky, M.E., and Gooding, J.L. (1986) Aqueous alteration on carbonaceous-chondrite parent bodies as inferred from weathering of meteorites in Antarctica. Meteoritics, 21, 548–549.Search in Google Scholar
Zolensky, M., and Ivanov, A.V. (2003) The Kaidun microbreccia meteorite: A harvest from the inner and outer asteroid belt. Chemie der Erde, 63, 185–246.10.1078/0009-2819-00038Search in Google Scholar
Zolensky, M.E., and McSween, H.Y. Jr. (1988) Aqueous alteration. In J.F. Kerridge and M.S. Matthews, Eds., Meteorites and the Early Solar System, pp. 114–143. University of Arizona Press.Search in Google Scholar
Zolensky, M.E., Prinz, M., and Lipschutz, M.E. (1991) Mineralogy and thermal history of Y-82162, Y-86720, B-7904. Symposium on Antarctic Meteorites, 16, 195–196.Search in Google Scholar
Zolensky, M.E., Barrett, T., and Browning, L. (1993) Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites. Geochimica et Cosmochimica Acta, 57, 3123–3148.10.1016/0016-7037(93)90298-BSearch in Google Scholar
Zolensky, M.E., Ivanov, A.V., Yang, V., Mittlefehldt, D.W., and Ohsumi, K. (1996) The Kaidun meteorite: Mineralogy of an unusual CM1 lithology. Meteoritics, 31, 484–493.10.1111/j.1945-5100.1996.tb02090.xSearch in Google Scholar
Zolensky, M.E., Bodnar, R.J., Gibson, E.K. Jr., Nyquist, L.E., Reese, Y., Shih, C.Y., and Wiesmann, H. (1999) Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite, Monahans (1998). Science, 285, 1377–1379.10.1126/science.285.5432.1377Search in Google Scholar PubMed
Zolensky, M., Gounelle, M., Mikouchi, T., Ohsumi, K., Le, L., Hagiya, K., and Tachikawa, O. (2008) Andreyivanovite: A second new phosphide from the Kaidun meteorite. American Mineralogist, 93, 1295–1299.10.2138/am.2008.2614Search in Google Scholar
Zolensky, M.E., Nakamura, K., Gounelle, M., Mikouchi, T., Kasama, T., Tachikawa, O., and Tonui, E. (2010) Mineralogy of the Tagish Lake: An ungrouped type 2 carbonaceous chondrite. Meteoritics & Planetary Science, 37, 737–761.10.1111/j.1945-5100.2002.tb00852.xSearch in Google Scholar
Zolotov, M.Yu. (2009) On the composition and differentiation of Ceres. Icarus, 204, 183–193.10.1016/j.icarus.2009.06.011Search in Google Scholar
Zubkova, N.V., Pekov, I.V., Chukanov, N.V., Pushcharovsky, D.Y., and Kazantsev, S.S. (2008) Nickelhexahydrite from the weathered meteorite Dronino: Variations of chemical composition, crystal structure, and genesis. Doklady Earth Sciences, 422, 1109–1112.10.1134/S1028334X08070246Search in Google Scholar
© 2021 Mineralogical Society of America
Articles in the same Issue
- Stable and transient isotopic trends in the crustal evolution of Zealandia Cordillera
- An evolutionary system of mineralogy, Part V: Aqueous and thermal alteration of planetesimals (~4565 to 4550 Ma)
- Cr2O3 in corundum: Ultrahigh contents under reducing conditions
- Plagioclase population dynamics and zoning in response to changes in temperature and pressure
- Limited channelized fluid infiltration in the Torres del Paine contact aureole
- Quantitative determination of the shock stage of L6 ordinary chondrites using X-ray diffraction
- A new method to rapidly and accurately assess the mechanical properties of geologically relevant materials
- Two-stage magmatism and tungsten mineralization in the Nanling Range, South China: Evidence from the Jurassic Helukou deposit
- Constraints on scheelite genesis at the Dabaoshan stratabound polymetallic deposit, South China
- Crystal chemistry of schreibersite, (Fe,Ni)3P
- Letter
- Elastic geobarometry: How to work with residual inclusion strains and pressures
- Controls on tetrahedral Fe(III) abundance in 2:1 phyllosilicates—Discussion
- Controls on tetrahedral Fe(III) abundance in 2:1 phyllosilicates—Reply
- New Mineral Names*
- Book Review
- Book Review: Geochronology and Thermochronology
Articles in the same Issue
- Stable and transient isotopic trends in the crustal evolution of Zealandia Cordillera
- An evolutionary system of mineralogy, Part V: Aqueous and thermal alteration of planetesimals (~4565 to 4550 Ma)
- Cr2O3 in corundum: Ultrahigh contents under reducing conditions
- Plagioclase population dynamics and zoning in response to changes in temperature and pressure
- Limited channelized fluid infiltration in the Torres del Paine contact aureole
- Quantitative determination of the shock stage of L6 ordinary chondrites using X-ray diffraction
- A new method to rapidly and accurately assess the mechanical properties of geologically relevant materials
- Two-stage magmatism and tungsten mineralization in the Nanling Range, South China: Evidence from the Jurassic Helukou deposit
- Constraints on scheelite genesis at the Dabaoshan stratabound polymetallic deposit, South China
- Crystal chemistry of schreibersite, (Fe,Ni)3P
- Letter
- Elastic geobarometry: How to work with residual inclusion strains and pressures
- Controls on tetrahedral Fe(III) abundance in 2:1 phyllosilicates—Discussion
- Controls on tetrahedral Fe(III) abundance in 2:1 phyllosilicates—Reply
- New Mineral Names*
- Book Review
- Book Review: Geochronology and Thermochronology