Home Ferropyrosmalite-bearing fluid inclusions in the North Patagonian Andes metasedimentary basement, Argentina: A record of regional metasomatism
Article
Licensed
Unlicensed Requires Authentication

Ferropyrosmalite-bearing fluid inclusions in the North Patagonian Andes metasedimentary basement, Argentina: A record of regional metasomatism

  • Graciela Sosa , Sebastián Oriolo ORCID logo EMAIL logo , Alfons van den Kerkhof , Pablo Diego González , Ezequiel Olaizola and Florencia Bechis
Published/Copyright: July 3, 2021
Become an author with De Gruyter Brill

Abstract

Quartz segregations in paragneisses from the Paleozoic basement of the North Patagonian Andes contain highly saline multiphase fluid inclusions with the rare daughter mineral ferropyrosmalite detected by Raman analysis, besides halite, sylvite, hematite, and/ or magnetite. During heating experiments, L-V homogenization occurs (256–515 °C), followed by halite dissolution (287–556 °C) and the dissolution of ferropyrosmalite at 550–581 °C. The latter phase transition triggers the growth of clinoamphibole crystals according to the following idealized reactions, written for potential end-members:

4Fe8Si6O15(OH)6Cl4+6Ca2+(aq)3Ca2Fe5Si8O22(OH)2+17Fe2+(aq)+16Cl(aq)+12OH+3H2 Ferropyrosmalite Ferro-actinoliteFe8Si6O15(OH)6Cl4+2Ca2+(aq)+Fe3+(aq)+2Al3+(aq)+Na+(aq)+H2ONaCa2Fe42+Fe3+Al2Si6O22Cl2+4Fe2+(aq)+2Cl(aq)+4H2Ferropyrosmalite  Chloro-hastingsite 

The amphibole resembles the composition of ferro-actinolite but also has striking similarities with chloro-hastingsite, as indicated by Raman spectroscopy. During the heating experiment, hematite (when present) transforms to magnetite by the uptake of H2, whereas inclusions without Fe-oxides contain traces of H2 after the reaction. This mineral transformation shows that ferropyrosmalite might result from the retrograde re-equilibration of amphibole with the brine, implying the uptake of Fe2+, Cl, and H2O and the enrichment of Ca2+ in the brine. Pervasive fluid flow and fluid-assisted diffusion are recorded by channel way microstructures, healed microfractures, and dissolution-reprecipitation phenomena, as demonstrated by cathodoluminescence microscopy. These alkali- and FeCl2-rich brines, derived from magmatic sources and of possible Mesozoic age, were related to regional metasomatism, coeval with widespread granitoid activity.

Acknowledgments and Funding

The reviews and constructive comments made by P. Koděra (Comenius University Bratislava, Slovak Republic) and D. Jenkins (Binghamton University, New York, U.S.A.) are highly acknowledged. The authors also thank B. Schmidt for his assistance during Raman analysis. S. Oriolo acknowledges financial support of the National Geographic Society (grant CP-123R17) and Agencia Nacional de Promoción Científica y Tecnológica (PICT-2017-1092).

References cited

Altree-Williams, A., Pring, A., Ngothai, Y., and Brugger, J. (2015) Textural and compositional complexities resulting from coupled dissolution-reprecipitation reactions in geomaterials. Earth-Science Reviews, 150, 628–651.10.1016/j.earscirev.2015.08.013Search in Google Scholar

Apopei, A.I., and Buzgar, N. (2010) The Raman study of amphiboles. Analele Ştiinţifice de Universităţii Al. I. Cuza Iaşi Geologie, 56, 57–83.Search in Google Scholar

Aragón, E., Castro, A., Díaz-Alvarado, J., and Liu, D.-Y. (2011) The North Pata-gonian batholith at Paso Puyehue (Argentina-Chile). SHRIMP ages and compositional features. Journal of South American Earth Sciences, 32, 547–554.10.1016/j.jsames.2011.02.005Search in Google Scholar

Assarsson, G.O. (1950) The quaternary system CaCl2-KCl-NaCl-H2O. Journal of the American Chemical Society, 72, 1433–1436.10.1021/ja01160a002Search in Google Scholar

Bakker, R.J. (2017) Re-equilibration processes in fluid inclusion assemblages. Minerals, 7, 117.10.3390/min7070117Search in Google Scholar

Banaszak, M. (2014) Differentiation regimes in the Central Andean magma systems: Case studies of Taapaca and Parinacota volcanoes, Northern Chile, 238 p. Ph.D. thesis, University of Göttingen, Göttingen.Search in Google Scholar

Bechis, F., Encinas, A., Concheyro, A., Litvak, V.D., Aguirre-Urreta, B., and Ramos, V.A. (2014) New age constraints for the Cenozoic marine transgressions of northwestern Patagonia, Argentina (41°–43° S): Paleogeographic and tectonic implications. Journal of South American Earth Sciences, 52, 72–93.10.1016/j.jsames.2014.02.003Search in Google Scholar

Behr, H.-J., and Frentzel-Beyme, K. (1987) Permeability and paleoporosity in crystalline bedrocks of the Central European Basement—Studies of cathodoluminescence. In H.J. Behr and C.B. Raleigh, Eds., Exploration of the Deep Continental Crust, 2, p. 477–497. Springer.10.1007/978-3-642-73455-7_39Search in Google Scholar

Bodnar, R.J. (2003) Introduction to aqueous electrolyte fluid inclusions. In I. Samson, A. Anderson, and D. Marshall, Eds., Fluid Inclusions: Analysis and Interpretation, 32, p. 81–100. Mineralogical Association of Canada, Vancouver.Search in Google Scholar

Borrok, D.M., Kelser, S.E., Boer, R.H., and Essene, E.J. (1998) The Vergenoeg magnetite-fluorite deposit, South Africa: Support for a hydrothermal model for massive iron oxide deposits. Economic Geology, 93, 564–586.10.2113/gsecongeo.93.5.564Search in Google Scholar

Budzyń, B., Harlov, D.E., Williams, M.L., and Jercinovic, M.J. (2011) Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. American Mineralogist, 96, 1547–1567.10.2138/am.2011.3741Search in Google Scholar

Burke, E.A.J. (2001) Raman microspectrometry of fluid inclusions. Lithos, 55, 139–158.10.1016/S0024-4937(00)00043-8Search in Google Scholar

Castro, A., Moreno-Ventas, I., Fernández, C., Vujovich, G., Gallastegui, G., Heredia, N., Martino, R.D., Becchio, R., Corretgé, L.G., Díaz-Alvarado, J., and others (2011a) Petrology and SHRIMP U-Pb zircon geochronology of Cordilleran granitoids of the Bariloche area, Argentina. Journal of South American Earth Sciences, 32, 508–530.10.1016/j.jsames.2011.03.011Search in Google Scholar

Castro, A., Aragón, E., Díaz-Alvarado, J., Blanco, I., García-Casco, A., Vogt, K., and Liu, D.-Y. (2011b) Age and composition of granulite xenoliths from Paso de Indios, Chubut province, Argentina. Journal of South American Earth Sciences, 32, 567–574.10.1016/j.jsames.2011.06.001Search in Google Scholar

Cepedal, A., Fuertes-Fuente, M., Martín-Izard, A., and Boiron, M.-C. (2003) Fluid composition in Ortosa Au-skarn and El Valle-Boinás Cu-Au skarn, Río Narcea Gold Belt (Spain). Acta Mineralogica-Petrographica, 2, 36–37.Search in Google Scholar

Dalla Salda, L.H., Cingolani, C.A., and Varela, R. (1991) El basamento cristalino de la región norpatagónica de los lagos Gutiérrez, Mascardi y Guillelmo, provincia de Río Negro. Revista de la Asociación Geológica Argentina, 46, 263–276.Search in Google Scholar

Dong, G., and Pollard, P.J. (1997) Identification of ferropyrosmalite by Laser Raman microprobe in fluid inclusions from metalliferous deposits in the Cloncurry District, NW Queensland, Australia. Mineralogical Magazine, 61, 291–293.10.1180/minmag.1997.061.405.12Search in Google Scholar

Fall, A., Tattitch, B., and Bodnar, R.J. (2011) Combined microthermometric and Raman spectroscopic technique to determine the salinity of H2O-CO2-NaCl fluid inclusions based on clathrate melting. Geochimica et Cosmochimica Acta, 75, 951–964.10.1016/j.gca.2010.11.021Search in Google Scholar

Fornero, E., Allegrina, M., Rinaudo, C., Mazziotti-Tagliani, S., and Gianfagna, A. (2008) Micro-Raman spectroscopy applied on oriented crystals of fluoroedenite amphibole. Periodico di Mineralogia, 77, 5–14.Search in Google Scholar

Frezzotti, M.L., Tecce, F., and Casagli, A. (2012) Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112, 1–20.10.1016/j.gexplo.2011.09.009Search in Google Scholar

García-Sansegundo, J., Farías, P., Gallastegui, G., Giacosa, R.E., and Heredia, N. (2009) Structure and metamorphism of the Gondwanan basement in the Bariloche region (North Patagonian Argentine Andes). International Journal of Earth Sciences, 98, 1599–1608.10.1007/s00531-008-0330-3Search in Google Scholar

Giacosa, R., Heredia, N., Césari, O., and Zubia, M. (2001) Hoja 4172-IV, San Carlos de Bariloche (provincias de Río Negro y Bariloche), 77 p. Instituto de Geología y Recursos Minerales (IGRM)–SEGEMAR, Buenos Aires.Search in Google Scholar

Giesting, P.A., and Filiberto, J. (2016) The formation environment of potassicchloro-hastingsite in the nakhlites MIL 03346 and pairs and NWA 5790: Insights from terrestrial chloro-amphibole. Meteoritics and Planetary Science, 51, 2127–2153.10.1111/maps.12675Search in Google Scholar

González Bonorino, F. (1973) Geología entre San Carlos de Bariloche y Llao Llao. San Carlos de Bariloche. Fundación Bariloche, San Carlos de Bariloche.Search in Google Scholar

González Díaz, E.F. (1982) Chronological zonation of granitic plutonism in the Northern Patagonian Andes of Argentina: The migration of intrusive cycles. Earth-Science Reviews, 18, 365–393.10.1016/0012-8252(82)90045-9Search in Google Scholar

Hanley, J.J., and Mungall, J.E. (2003) Chlorine enrichment and hydrous alteration of the Sudbury breccia hosting footwall Cu-Ni-PGE mineralization at the Fraser mine, Sudbury, Ontario, Canada. Canadian Mineralogist, 41, 857–881.10.2113/gscanmin.41.4.857Search in Google Scholar

Harlov, D., and Austrheim, H. (2012) Metasomatism and the Chemical Transformation of Rock: The role of fluids in terrestrial and extraterrestrial processes, 806 p. Springer, Berlin Heidelberg.10.1007/978-3-642-28394-9Search in Google Scholar

Harlov, D.E., Wirth, R., and Hetherington, C.J. (2011) Fluid-mediated partial alteration of monazite: The role of coupled dissolution-reprecipitation during apparent solid state element mass transfer. Contributions to Mineralogy and Petrology, 162, 329–348.10.1007/s00410-010-0599-7Search in Google Scholar

Jamtveit, B., Austrheim, H., and Malthe-Sørenssen, A. (2000) Accelerated hydration of the Earth’s deep crust induced by stress perturbations. Nature, 408, 75–78.10.1038/35040537Search in Google Scholar PubMed

Jenkins, D.M. (2019) The incorporation of chlorine into calcium amphibole. American Mineralogist, 104, 514–524.10.2138/am-2019-6768Search in Google Scholar

Koděra, P., Rankin, A.H., and Lexa, J. (1998) Evolution of fluids responsible for iron skarn mineralisation: An example from the Vyhne-Klokoč deposit, Western Carpathians, Slovakia. Mineralogy and Petrology, 64, 119–147.10.1007/BF01226566Search in Google Scholar

Koděra, P., Murphy, P.J., and Rankin, A.H. (2003) Retrograde mineral reactions in saline fluid inclusions: The transformation ferropyrosmalite ↔ clinopyroxene. American Mineralogist, 88, 151–158.10.2138/am-2003-0118Search in Google Scholar

Kwak, T.A.P. (1986) Fluid inclusions in skarns (carbonate replacement deposits). Journal of Metamorphic Geology, 4, 363–384.10.1111/j.1525-1314.1986.tb00358.xSearch in Google Scholar

Lafuente, B., Downs, R. T., Yang, H., and Stone, N. (2015) The power of databases: the RRUFF project. In T. Armbruster and R.M. Danisi, Eds., Highlights in Mineralogical Crystallography, p. 1–30. De Gruyter.10.1515/9783110417104-003Search in Google Scholar

Leissner, L., Schlüter, J., Horn, I., and Mihailova, B. (2015) Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: I. Amphiboles. American Mineralogist, 100, 2682–2694.10.2138/am-2015-5323Search in Google Scholar

Li, C., and Naldrett, A.J. (1993) High chlorine alteration minerals and calcium-rich brines in fluid inclusions from the Strathcona deep copper zone, Sudbury, Ontario. Economic Geology, 88, 1780–1796.10.2113/gsecongeo.88.7.1780Search in Google Scholar

Martínez, J.C., Dristas, J.A., and Massonne, H.-J. (2012) Palaeozoic accretion of the microcontinent Chilenia, North Patagonian Andes: High-pressure metamorphism and subsequent thermal relaxation. International Geology Review, 54, 472–490.10.1080/00206814.2011.569411Search in Google Scholar

Martínez Dopico, C.I., Tohver, E., López de Luchi, M.G., Wemmer, K., Rapalini, A.E., and Cawood, P.A. (2017) Jurassic cooling ages in Paleozoic to early Mesozoic granitoids of northeastern Patagonia: 40Ar/39Ar, 40K-40Ar mica and U-Pb zircon evidence. International Journal of Earth Sciences, 106, 2343–2357.10.1007/s00531-016-1430-0Search in Google Scholar

Matthews, A.N. (1976) Magnetite formation by the reduction of hematite with iron under hydrothermal conditions. American Mineralogist, 61, 927–932.Search in Google Scholar

Neuser, R.D., Bruhn, F., Götze, J., Habermann, D., and Richter, D.K. (1995) Cathodoluminescence: method and application. Zentralblatt für Geologie und Paläontologie, 1-2, 287–306.Search in Google Scholar

Oakes, C.S., Bodnar, R.J., and Simonson, J.M. (1990) The system NaCl-CaCl2- H2O: I. The ice liquidus at 1 atm total pressure. Geochimica et Cosmochimica Acta, 54, 603–610.10.1016/0016-7037(90)90356-PSearch in Google Scholar

Olaizola, E.R., Bechis, F., Ballesteros, J., Oriolo, S., Christie Newbery, J., and Yagupsky, D.L. (2020) Análisis de la evolución cinemática y exhumación asociadas a las fases de deformación registradas en los Andes Norpatagónicos a los 41°50ʹ S. XXI Congreso Geológico Argentino, Puerto Madryn.Search in Google Scholar

Oriolo, S., Schulz, B., González, P. D., Bechis, F., Olaizola, E., Krause, J., Renda, E., and Vizán, H. (2019) The Late Paleozoic tectonometamorphic evolution of Patagonia revisited: Insights from the pressure-temperature-deformation-time P-T-D-t) path of the Gondwanide basement of the North Patagonian Cordillera (Argentina). Tectonics, 38, 2378–2400. https://doi.org/10.1029/2018TC005358.10.1029/2018TC005358Search in Google Scholar

Orts, D.L., Folguera, A., Encinas, A., Ramos, M., Tobal, J., and Ramos, V.A. (2012) Tectonic development of the North Patagonian Andes and their related Miocene foreland basin (41°30ʹ-43°S). Tectonics, 31, TC3012.Search in Google Scholar

Páez, G.N., Ruiz, R., Guido, D.M., Jovic, S.M., and Schalamuk, I.B. (2010) The effects of K-metasomatism in the Bahía Laura Volcanic Complex, Deseado Massif, Argentina: Petrologic and metallogenic consequences. Chemical Geology, 273, 300–313.10.1016/j.chemgeo.2010.03.007Search in Google Scholar

Pan, Y., Fleet, M.E., Barnett, R.L., and Chen, Y. (1993) Pyrosmalite in Canadian Precambrian sulfide deposits; mineral chemistry, petrogenesis and significance. Canadian Mineralogist, 31, 695–710.Search in Google Scholar

Putnis, A. (2009) Mineral replacement reactions. Reviews in Mineralogy and Geochemistry, 70, 87–124.10.1515/9781501508462-005Search in Google Scholar

Putnis, A., and Austrheim, H. (2010) Fluid-induced processes: Metasomatism and metamorphism. Geofluids, 10, 254–269.10.1002/9781444394900.ch18Search in Google Scholar

Putnis, A., and John, T. (2010) Replacement processes in the Earth’s crust. Elements, 6, 159–164.10.2113/gselements.6.3.159Search in Google Scholar

Raič, S., Mogessie, A., Krenn, K., Hauzenberger, C.A., and Tropper, P. (2018) Deciphering magmatic and metasomatic processes recorded by fluid inclusions and apatite within the Cu-Ni±PGE-sulfide mineralized bathtub intrusion of the Duluth Complex, NE Minnesota, U.S.A. Journal of Petrology, 59, 1167–1192.10.1093/petrology/egy059Search in Google Scholar

Rapela, C.W., Spalletti, L.A., Merodio, J.C., and Aragón, E. (1988) Temporal evolution and spatial variation of early Tertiary volcanism in the Patagonian Andes (40°S–42°30ʹS). Journal of South American Earth Sciences, 1, 75–88.10.1016/0895-9811(88)90017-XSearch in Google Scholar

Rebay, G., Riccardi, M.P., Spalla, M.I. (2015) Fluid rock interactions as recorded by Cl-rich amphiboles from continental and oceanic crust of Italian orogenic belts. Periodico di Mineralogia, 84, 751–777.Search in Google Scholar

Renda, E.M., Alvarez, D., Prezzi, C., Oriolo, S., and Vizán, H. (2019) Inherited basement structures and their influence in foreland evolution: A case study in Central Patagonia, Argentina. Tectonophysics, 772, 228232.10.1016/j.tecto.2019.228232Search in Google Scholar

Rösche, C. (2018) Thermal stability and oxidation processes in amphiboles on the tremolite-ferro-actinolite join studied by Raman spectroscopy. B.Sc. thesis, University of Hamburg.Search in Google Scholar

Ruiz-Agudo, E., Putnis, C.V., and Putnis, A. (2014) Coupled dissolution and precipitation at mineral-fluid interfaces. Chemical Geology, 383, 132–146.10.1016/j.chemgeo.2014.06.007Search in Google Scholar

Steele-MacInnis, M., Bodnar, R.J., and Naden, J. (2011) Numerical model to determine the composition of H2O-NaCl-CaCl2 fluid inclusions based on microthermometric and microanalytical data. Geochimica et Cosmochimica Acta, 75, 21–40.10.1016/j.gca.2010.10.002Search in Google Scholar

Suárez, R.J., and González, P.D. (2018) Caracterización geológica del metamorfismo diastatermal mesozoico en la Cuenca Neuquina y su relación con la anomalía térmica en el sinrift. Revista de la Asociación Geológica Argentina, 75, 457–472.Search in Google Scholar

Tazava, E., Oliveira, C.G., and Souza Gomes, N. (1999) Ocorrência de ferropirosmalita nas brechas mineralizadas do depósito de Au-Cu-(±ETR-U) de Igarapé Bahia, província mineral de Carajás. Revista Brasileira de Geociências, 29, 345–348.10.25249/0375-7536.199929345348Search in Google Scholar

Touret, J.L.R. (2001) Fluids in metamorphic rocks. Lithos, 55, 1–25.10.1016/S0024-4937(00)00036-0Search in Google Scholar

van den Kerkhof, A.M., and Hein, U.F. (2001) Fluid inclusion petrography. Lithos, 55, 27–47.10.1016/S0024-4937(00)00037-2Search in Google Scholar

van den Kerkhof, A.M., Riganti, A., Scherer, T., Kronz, A., and Simon, K. (2004) Origin and evolution of Archean quartzites from the Nondweni greenstone belt (South Africa): Inferences from a multidisciplinary study. South African Journal of Geology, 107, 559–576.10.2113/gssajg.107.4.559Search in Google Scholar

van den Kerkhof, A., Kronz, A., and Simon, K. (2014) Deciphering fluid inclusions in high-grade rocks. Geoscience Frontiers, 5, 683–695.10.1016/j.gsf.2014.03.005Search in Google Scholar

Vaughan, J.P. (1986) The iron end-member of the pyrosmalite series from the Pegmont lead-zinc deposit, Queensland. Mineralogical Magazine, 50, 527–531.10.1180/minmag.1986.050.357.17Search in Google Scholar

Vityk, M.O., and Bodnar, R.J. (1995) Do fluid inclusions in high-grade metamorphic terranes preserve peak metamorphic density during retrograde decompression? American Mineralogist, 80, 641–644.Search in Google Scholar

Volfinger, M., Robert, J.-L., Vielzeuf, D., and Neiva, A.M.R. (1985) Structural control of the chlorine content of OH-bearing silicates (micas and amphiboles). Geochimica et Cosmochimica Acta, 49, 37–48.10.1016/0016-7037(85)90189-9Search in Google Scholar

Wagner, T., Fusswinkel, T., Wälle, M., and Heinrich, C.A. (2016) Microanalysis of fluid inclusions in crustal hydrothermal systems using laser ablation methods. Elements, 12, 323–328.10.2113/gselements.12.5.323Search in Google Scholar

Wanhainen, C., Broman, C., Martinsson, O., and Magnor, B. (2012) Modification of a Palaeoproterozoic porphyry-like system: Integration of structural, geochemical, petrographic, and fluid inclusion data from the Aitik Cu-Au-Ag deposit, northern Sweden. Ore Geology Reviews, 48, 306–331.10.1016/j.oregeorev.2012.05.002Search in Google Scholar

Williams, M.L., Jercinovic, M.J., Harlov, D.E., Budzyń, B., and Hetherington, C.J. (2011) Resetting monazite ages during fluid-related alteration. Chemical Geology, 283, 218–225.10.1016/j.chemgeo.2011.01.019Search in Google Scholar

Yang, H., Downs, R.T., Yang, Y.W., and Allen, W.H. (2012) Pyrosmalite-(Fe), Fe8Si6O15(OH, Cl)10 Acta Crystallographica, E68, i7–i8.10.1107/S1600536811052822Search in Google Scholar PubMed PubMed Central

Yardley, B.W.D., and Bodnar, R.J. (2014) Fluids in the continental crust. Geochemical Perspectives, 3, 1–127.10.7185/geochempersp.3.1Search in Google Scholar

Zharikov, V.A., Pertsev, N.N., Rusinov, V.L., Callegari, E., and Fettes, D.J. (2007) Metasomatism and metasomatic rocks, 17 p. Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks, International Union of Geological Sciences (IUGS).Search in Google Scholar

Zwart, E.W., and Touret, J.L.R. (1994) Melting behaviour and composition of aqueous fluid inclusions in fluorite and calcite: Applications within the system H2O-CaCl2-NaCl. European Journal of Mineralogy, 6, 773–786.10.1127/ejm/6/6/0773Search in Google Scholar

Received: 2020-03-26
Accepted: 2020-09-23
Published Online: 2021-07-03
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Tourmaline composition and boron isotope signature as a tracer of magmatic-hydrothermal processes
  2. Deformation and strength of mantle relevant garnets: Implications for the subduction of basaltic-rich crust
  3. Ultra-reduced phases in ophiolites cannot come from Earth’s mantle
  4. Olivine from aillikites in the Tarim large igneous province as a window into mantle metasomatism and multi-stage magma evolution
  5. Precise determination of the effect of temperature on the density of solid and liquid iron, nickel, and tin
  6. Timescales of crystal mush mobilization in the Bárðarbunga-Veiðivötn volcanic system based on olivine diffusion chronometry
  7. Chemical reactions in the Fe2SiO4-D2 system with a variable deuterium content at 7.5 GPa
  8. High-pressure syntheses and crystal structure analyses of a new low-density CaFe2O4-related and CaTi2O4-type MgAl2O4 phases
  9. Phase diagram and thermal expansion of orthopyroxene-, clinopyroxene-, and ilmenite-structured MgGeO3
  10. Mass transfer associated with chloritization in the hydrothermal alteration process of granitic pluton
  11. Nonlinear effects of hydration on high-pressure sound velocities of rhyolitic glasses
  12. Crystal chemistry and high-temperature vibrational spectra of humite and norbergite: Fluorine and titanium in humite-group minerals
  13. Exomorphism of jacobsite precipitates in bixbyite single crystals from the Thomas Range in Utah
  14. Ferropyrosmalite-bearing fluid inclusions in the North Patagonian Andes metasedimentary basement, Argentina: A record of regional metasomatism
  15. Memorial of Alden Bliss Carpenter (1936–2019)
  16. New Mineral Names
Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2021-7525/html
Scroll to top button