Home Biosilica as a source for inspiration in biological materials science
Article
Licensed
Unlicensed Requires Authentication

Biosilica as a source for inspiration in biological materials science

  • Marcin Wysokowski , Teofil Jesionowski and Hermann Ehrlich EMAIL logo
Published/Copyright: April 30, 2018
Become an author with De Gruyter Brill

Abstract

Biomineralization is an evolutionarily ancient phenomenon and one of the fundamental biological processes by which living organisms produce minerals with multifunctional properties. Among the more general biomineralization processes, those involving silica (biosilicification), calcium-based biominerals (calcification), and iron-based biominerals (biomagnetism) have been described in a wide pattern of living organisms, from single cells to higher plants, animals, and even humans. After 25 yr of extensive studies of biosilicification, diverse biomacromolucules have been proposed and confirmed as active players in this special field of biomineralization. Despite these discoveries, biosilicification is still a paradigm and a cause of scientific controversy. This review has the ambitious goal of providing thorough and comprehensive coverage of biosilicification as a multifaceted topic with intriguing hypotheses and numerous challenging open questions. The structural diversity, chemistry, and biochemistry of biosilica in viruses, bacteria, plants, diatoms, and sponges are analyzed and discussed here. Special attention is paid to prospects and trends in applications of biosilica for technology, materials science and biomedicine.


† Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.


Acknowledgments

This work was partially supported by DFG Project HE 394/3-2 and PUT Research Grant no. 03/32/DSPB/0806. M.W. is grateful for financial support from the Foundation for Polish Science: START 097.2017. We are thankful to Allison Stelling for her outstanding technical and scientific support.

References cited

Aitken, Z.H., Luo, S., Reynolds, S.N., Thaulow, C., and Greer, J.R. (2016) Microstructure provides insights into evolutionary design and resilience of Coscinodiscus sp. frustule. Proceedings of the National Academy of Sciences, 113, 2017–2022.10.1073/pnas.1519790113Search in Google Scholar PubMed PubMed Central

Aizenberg, J., Sundar, V.C., Yablon, A.D., Weaver, J.C., and Chen, G. (2004) Biological glass fibers: correlation between optical and structural properties. Proceedings of the National Academy of Sciences, 101, 3358–3363.10.1073/pnas.0307843101Search in Google Scholar PubMed PubMed Central

Aizenberg, J., Weaver, J.C., Thanawala, M.S., Sundar, V.C., Morse, D.E., and Fratzl, P. (2005) Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science, 309, 275–278.10.1126/science.1112255Search in Google Scholar PubMed

Albert, K., Huang, X.C., and Hsu, H.Y. (2017) Bio-templated silica composites for next-generation biomedical applications. Advances in Colloid and Interface Science, 10.1016/j.cis.2017.04.011.Search in Google Scholar PubMed

Alleon, J., Bernard, S., Le Guillou, C., Daval, D., Skouri-Panet, F., Pont, S., Delbes, L., and Robert, F. (2016) Early entombment within silica minimizes the molecular degradation of microorganisms during advanced diagenesis. Chemical Geology, 437, 98–108.10.1016/j.chemgeo.2016.05.034Search in Google Scholar

Alonso, J.M., Górzny, M.L., and Bittner, A.M. (2013) The physics of tobacco mosaic virus and virus-based devices in biotechnology. Trends in Biotechnology, 31, 530–538.10.1016/j.tibtech.2013.05.013Search in Google Scholar PubMed

Altintoprak, K., Seidenstücker, A., Welle, A., Eiben, S., Atanasova, P., Stitz, N., Plettl, A., Bill, J., Gliemann, H., Jeske, H., and others. (2015) Peptide-equipped tobacco mosaic virus templates for selective and controllable biomineral deposition. Beilstein Journal of Nanotechnology, 6, 1399–1412.10.3762/bjnano.6.145Search in Google Scholar PubMed PubMed Central

Aluma, Y., Ilan, M., and Sherman, D. (2011) Comments on a skeleton design paradigm for a demosponge. Journal of Structural Biology, 175, 415–424.10.1016/j.jsb.2011.05.006Search in Google Scholar PubMed

Alvarez, G.S., Foglia, M.L., Copello, G.J., Desimone, M.F., and Diaz, L.E. (2009) Effect of various parameters on viability and growth of bacteria immobilized in sol-gel-derived silica matrices. Applied Microbiology and Biotechnology, 82, 639–646.10.1007/s00253-008-1783-9Search in Google Scholar PubMed

Amores, D.R., and Warren, L.A. (2007) Identifying when microbes biosilicify: The interconnected requirements of acidic pH, colloidal SiO2 and exposed microbial surface. Chemical Geology, 240, 298–312.10.1016/j.chemgeo.2007.02.016Search in Google Scholar

Amores, D.R., and Warren, L.A. (2009) Metabolic patterning of biosilicification. Chemical Geology, 268, 81–88.10.1016/j.chemgeo.2009.07.013Search in Google Scholar

Andre, R., Tahir, M.N., Natalio, F., and Tremel, W. (2012) Bioinspired synthesis of multifunctional inorganic and bio-organic hybrid materials. The FEBS Journal, 279, 1737–49.10.1111/j.1742-4658.2012.08584.xSearch in Google Scholar

Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H., Zhou, S., Allen, A.E., Apt, K.E., Bechner, M., and others. (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science, 306, 79–86.10.1126/science.1101156Search in Google Scholar

Austin, W., and Conway, K. (2007) Growth and morphology of a reef-forming glass sponge, Aphrocallistes vastus (Hexactinellida), and implications for recovery from widespread trawl damage. Porifera Research, 139–145.Search in Google Scholar

Aw, M.S., Simovic, S., Addai-Mensah, J., and Losic, D. (2011) Silica microcapsules from diatoms as new carrier for delivery of therapeutics. Nanomedicine, 6, 1159–1173.10.2217/nnm.11.29Search in Google Scholar

Bai, S., Naren, G., Noma, H., Etou, M., Ohashi, H., Fujino, Y., Doi, K., Okaue, Y., and Yokoyama, T. (2012) Silica deposition induced by isolated aluminum ions bound on chelate resin as a model compound of the surface of microbes. Colloids and Surfaces B: Biointerfaces, 95, 208–213.10.1016/j.colsurfb.2012.02.044Search in Google Scholar

Baines, S.B., Twining, B.S., Brzezinski, M.A., Krause, J.W., Vogt, S., Assael, D., and McDaniel, H. (2012) Significant silicon accumulation by marine picocyanobacteria. Nature Geoscience, 5, 886–891.10.1038/ngeo1641Search in Google Scholar

Bazhenov, V.V., Wysokowski, M., Petrenko, I., Stawski, D., Sapozhnikov, P., Born, R., Stelling, A.L., Kaiser, S., and Jesionowski, T. (2015) Preparation of monolithic silica–chitin composite under extreme biomimetic conditions. International Journal of Biological Macromolecules, 76, 33–38.10.1016/j.ijbiomac.2015.02.012Search in Google Scholar

Belkova, N.L., Zakharova, J.R., Tazaki, K., Okrugin, V.M., and Parfenova, V.V. (2004) Fe-Si biominerals in the Vilyuchinskie hot springs, Kamchatka Peninsula, Russia. International Microbiology, 7, 193–198.Search in Google Scholar

Belton, D.J., Deschaume, O., and Perry, C.C. (2012) An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. The FEBS Journal, 279, 1710–1720.10.1111/j.1742-4658.2012.08531.xSearch in Google Scholar

Bengston, S., Rasmussen, B., Ivarsson, M., Muhling, J., Broman, C., Marone, F., Stampanoni, M., and Bekker, A. (2017) Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt. Nature Ecology & Evolution, 1, 0141.10.1038/s41559-017-0141Search in Google Scholar

Benning, L.G., Phoenix, V.R., Yee, N., and Konhauser, K.O. (2004) The dynamics of cyanobacterial silicification: An infrared micro-spectroscopic investigation. Geochimica et Cosmochimica Acta, 68, 743–757.10.1016/S0016-7037(03)00488-5Search in Google Scholar

Birkbak, M.E., Guizar-Sicairos, M., Holler, M., and Birkedal, H. (2016) Internal structure of sponge glass fiber revealed by ptychographic nanotomography. Journal of Structural Biology, 194, 124–128.10.1016/j.jsb.2016.02.006Search in Google Scholar PubMed

Blank, C.E., Cady, S.L., and Pace, N.R. (2002) Microbial composition of nearboiling silica-depositing thermal springs throughout Yellowstone National Park. Applied & Environmental Microbiology, 68, 5123–5135.10.1128/AEM.68.10.5123-5135.2002Search in Google Scholar PubMed PubMed Central

Bonucci, E. (2014) Understanding nanocalcification: A role suggested for crystal ghosts. Marine Drugs, 12, 4231–4246.10.3390/md12074231Search in Google Scholar PubMed PubMed Central

Boury-Esnault, N., and Rutzler, K. (1997) Thesaurus of sponge morphology. Smithsonian Contributions to Zoology, 596, 1–55.10.5479/si.00810282.596Search in Google Scholar

Bovee, E.C. (1981) Distribution and forms of siliceous structures among protozoa. In T.L. Simpson and B.E. Volcani, Eds., Silicon and Siliceous Structures in Biological Systems, pp. 233–279. Springer, New York.10.1007/978-1-4612-5944-2_9Search in Google Scholar

Bradbury, J. (2004) Nature’s nanotechnologists: Unveiling the secrets of diatoms. PLoS Biology, 2, 1512–1515.10.1371/journal.pbio.0020306Search in Google Scholar PubMed PubMed Central

Brunner, E., Richthammer, P., Ehrlich, H., Paasch, S., Simon, P., Ueberlein, S., and van Pée, K.-H. (2009) Chitin-based organic networks: an integral part of cell wall biosilica in the diatom Thalassiosira pseudonana. Angewandte Chemie (International Edition), 48, 9724–9727.10.1002/anie.200905028Search in Google Scholar PubMed

Butts, S.H. (2014) Silicification. The Paleontological Society Papers, 20, 15–34.10.1017/S1089332600002783Search in Google Scholar

Cha, J.N., Shimizu, K., Zhou, Y., Christiansen, S.C., Chmelka, B.F., Stucky, G. D., and Morse, D.E. (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proceedings of the National Academy of Sciences, 96, 361–365.10.1073/pnas.96.2.361Search in Google Scholar PubMed PubMed Central

Chanzy, H., Franc, J.M., and Herbage, D. (1976) High-angle electron diffraction of frozen hydrated collagen. The Biochemical Journal, 153, 139–140.10.1042/bj1530139Search in Google Scholar PubMed PubMed Central

Checa, A.G., Bonarski, J.T., Willinger, M.G., Faryna, M., Berent, K., Kania, B., González-Segura, A., Pina, C.M., Pospiech, J., and Morawiec, A. (2013) Crystallographic orientation inhomogeneity and crystal splitting in biogenic calcite. Journal of the Royal Society Interface, 10, 20130425.10.1098/rsif.2013.0425Search in Google Scholar

Cho, J.W., Partin, J.S., and Lennarz, W.J. (1996) A technique for detecting matrix proteins in the crystalline spicule of the sea urchin embryo. Proceedings of the National Academy of Sciences, 93, 1282–1286.10.1073/pnas.93.3.1282Search in Google Scholar

Cicco, S.R., Vona, D., De Giglio, E., Cometa, S., Mattioli-Belmonte, M., Palumbo, F., Ragni, R., and Farinola, G.M. (2015) Chemically modified diatoms biosilica for bone cell growth with combined drug-delivery and antioxidant properties. ChemPlusChem, 80, 1104–1112.10.1002/cplu.201402398Search in Google Scholar

Clarke, J. (2003) The occurrence and significance of biogenic opal in the regolith. Earth-Science Reviews, 60, 175–194.10.1016/S0012-8252(02)00092-2Search in Google Scholar

Cockerell, T.D.A. (1930) Siliceous shells of protozoa. Nature, 125, 975.10.1038/125975b0Search in Google Scholar

Croce, G., Frache, A., Milanesio, M., Viterbo, D., Bavestrello, G., Benatti, U., Giovine, M., and Amenitsch, H. (2003) Fiber diffraction study of spicules from marine sponges. Microscopy Research and Technique, 62, 378–381.10.1002/jemt.10403Search in Google Scholar

Croce, G., Frache, A., Milanesio, M., Marchese, L., Causà, M., Viterbo, D., Barbaglia, A., Bolis, V., Bavestrello, G., Cerrano, C., and others. (2004) Structural characterization of siliceous spicules from marine sponges. Biophysical Journal, 86, 526–534.10.1016/S0006-3495(04)74131-4Search in Google Scholar

Currie, H.A., and Perry, C.C. (2007) Silica in plants: Biological, biochemical and chemical studies. Annals of Botany, 100, 1383–1389.10.1093/aob/mcm247Search in Google Scholar PubMed PubMed Central

De Yoreo, J.J., Gilbert, P.U.P.A., Sommerdijk, N.A.J.M., Penn, R.L., Whitelam, S., Joester, D., Zhang, H., Rimer, J.D., Navrotsky, A., Banfield, J.F., and others. (2015) Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 349, aaa6760.10.1126/science.aaa6760Search in Google Scholar PubMed

Demadis, K.D., Mavredaki, E., and Somara, M. (2011a) Additive-driven dissolution enhancement of colloidal silica. 1. Basic principles and relevance to water treatment. Industrial & Engineering Chemistry Research, 50, 12,587–12,595.10.1021/ie201703bSearch in Google Scholar

Demadis, K.D., Mavredaki, E., and Somara, M. (2011b) Additive-driven dissolution enhancement of colloidal silica. 2. Environmentally friendly additives and natural products. Industrial & Engineering Chemistry Research, 50, 13,866–13,876.10.1021/ie201798eSearch in Google Scholar

Demadis, K.D., Somara, M., and Mavredaki, E. (2012) Additive-driven dissolution enhancement of colloidal silica. 3. Fluorine-containing additives. Industrial & Engineering Chemistry Research, 51, 2952–2962.10.1021/ie202806mSearch in Google Scholar

Demadis, K.D., Brückner, S.I., Brunner, E., Paasch, S., Antonakaki, I., and Casolaro, M. (2015) The intimate role of imidazole in the stabilization of silicic acid by a pH-responsive, histidine-grafted polyampholyte. Chemistry of Materials, 27, 6827–6836.10.1021/acs.chemmater.5b03100Search in Google Scholar

Denicola, D.M. (2000) A review of diatoms found in highly acidic environments. Hydrobiologia, 433, 111–122.10.1023/A:1004066620172Search in Google Scholar

Desikachary, T.V., and Dweltz, N.E. (1961) Chemical composition of the diatom frustule. Proceedings of the Indian Academy of Sciences–Section B, 53, 157–165.10.1007/BF03051518Search in Google Scholar

Doi, K., Fujino, Y., Inagaki, F., Kawatsu, R., Tahara, M., Ohshima, T., Okaue, Y., Yokoyama, T., Iwai, S., and Ogata, S. (2009) Stimulation of expression of a silica-induced protein (Sip) in Thermus thermophilus by supersaturated silicic acid. Applied and Environmental Microbiology, 75, 2406–2413.10.1128/AEM.02387-08Search in Google Scholar PubMed PubMed Central

Donati, G. (2016) Bright sponges. Nature Photonics, 10, 625.10.1038/nphoton.2016.199Search in Google Scholar

Douglas, S. (2005) Mineralogical footprints of microbial life. American Journal of Science, 305, 503–525.10.2475/ajs.305.6-8.503Search in Google Scholar

Durak, G.M., Taylor, A.R., Walker, C.E., Probert, I., De Vargas, C., Audic, S., Schroeder, D., Brownlee, C., and Wheeler, G.L. (2016) A role for diatom-like silicon transporters in calcifying coccolithophores. Nature Communications, 7, 10543.10.1038/ncomms10543Search in Google Scholar PubMed PubMed Central

Durkin, C.A., Mock, T., and Armbrust, E.V. (2009) Chitin in diatoms and its association with the cell wall. Eukaryotic Cell, 8, 1038–1050.10.1128/EC.00079-09Search in Google Scholar PubMed PubMed Central

Durkin, C.A., Koester, J.A., Bender, S.J., and Armbrust, E.V. (2016) The evolution of silicon transporters in diatoms. Journal of Phycology, 52, 716–731.10.1111/jpy.12441Search in Google Scholar PubMed PubMed Central

Eckert, C., Schröder, H.C., Brandt, D., Perovic-Ottstadt, and Müller, W.E.G. (2006) Histochemical and electron microscopic analysis of spiculogenesis in the demosponge Suberites domuncula. Zootaxa, 54, 1031–1040.10.1369/jhc.5A6903.2006Search in Google Scholar PubMed

Ehrlich, H. (2010a) Biological Materials of Marine Origin. Springer, Dordrecht.10.1007/978-90-481-9130-7Search in Google Scholar

Ehrlich, H. (2010b) Chitin and collagen as universal and alternative templates in biomineralization. International Geology Review, 52, 661–699.10.1080/00206811003679521Search in Google Scholar

Ehrlich, H. (2011) Silica biomineralization, sponges. In V. Thiel and J. Reitner, Eds., Encyclopedia of Geobiology, p. 796–808. Springer.10.1007/978-1-4020-9212-1_31Search in Google Scholar

Ehrlich, H. (2013) Biomimetic potential of chitin-based composite biomaterials of poriferan origin. In A.J. Ruys, Ed., Biomimetic Biomaterials: Structure and applications, p. 47–67. Woodhead Publishing.10.1533/9780857098887.1.46Search in Google Scholar

Ehrlich, H. (2017) Extreme Biomimetics. Springer.10.1007/978-3-319-45340-8Search in Google Scholar

Ehrlich, H., and Witkowski, A. (2015) Biomineralization in diatoms: the organic templates. In C. Hamm, Ed., Evolution of Lightweight Structures, 6, p. 39–58. Springer.10.1007/978-94-017-9398-8_3Search in Google Scholar

Ehrlich, H., and Worch, H. (2008) Collagen: a huge matrix in glass sponge flexible spicules of the meter-long Hyalonema sieboldi. Handbook of Biomineralization: Biological Aspects and Structure Formation, 1, 22–41.10.1002/9783527619443.ch2Search in Google Scholar

Ehrlich, H., Maldonado, M., Spindler, K., Eckert, C., Hanke, T., Born, R., Simon, P., Heinemann, S., and Worch, H. (2007a) First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera). Journal of Experimental Zoology Part B, 356, 347–356.10.1002/jez.b.21156Search in Google Scholar PubMed

Ehrlich, H., Krautter, M., Hanke, T., Simon, P., Knieb, C., Heinemann, S., and Worch, H. (2007b) First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). Journal of Experimental Zoology Part B, 308, 473–483.10.1002/jez.b.21174Search in Google Scholar PubMed

Ehrlich, H., Heinemann, S., Heinemann, C., Simon, P., Bazhenov, V. V., Shapkin, N.P., Born, R., Tabachnick, K.R., Hanke, T., and Worch, H. (2008) Nanostructural organization of naturally occurring composites—part I: silica-collagen-based biocomposites. Journal of Nanomaterials 2008, ID 623838.10.1155/2008/623838Search in Google Scholar

Ehrlich, H., Simon, P., Carrillo-Cabrera, W., Bazhenov, V. V., Botting, J.P., Ilan, M., Ereskovsky, A.V., Muricy, G., Worch, H., Mensch, A., and others. (2010a) Insights into chemistry of biological materials: newly discovered silica-aragonite-chitin biocomposites in Demosponges. Chemistry of Materials, 22, 1462–1471.10.1021/cm9026607Search in Google Scholar

Ehrlich, H., Deutzmann, R., Brunner, E., Cappellini, E., Koon, H., Solazzo, C., Yang, Y., Ashford, D., Thomas-Oates, J., Lubeck, M., and others. (2010b) Mineralization of the metre-long biosilica structures of glass sponges is templated on hydroxylated collagen. Nature Chemistry, 2, 1084–1088.10.1038/nchem.899Search in Google Scholar PubMed

Ehrlich, H., Demadis, K.D., Pokrovsky, O.S., and Koutsoukos, P.G. (2010c) Modern views on desilicification: biosilica and abiotic silica dissolution in natural and artificial environments. Chemical Reviews, 110, 4656–4689.10.1021/cr900334ySearch in Google Scholar PubMed

Ehrlich, H., Rigby, J.K., Botting, J.P., Tsurkan, M., Werner, C., Schwille, P., Petrasek, Z., Pisera, A., Simon, P., Sivkov, V., and others. (2013) Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Scientific Reports, 3, 3497.10.1038/srep03497Search in Google Scholar PubMed PubMed Central

Ehrlich, H., Maldonado, M., Parker, A.R., Kulchin, Y.N., Schilling, J., Köhler, B., Skrzypczak, U., Simon, P., Reiswig, H.M., Tsurkan, M. V., and others. (2016) Supercontinuum generation in naturally occurring glass sponges spicules. Advanced Optical Materials, 4, 1608–1613.10.1002/adom.201600454Search in Google Scholar

Ehrlich, H., Bazhenov, V. V., Debitus, C., de Voogd, N., Galli, R., Tsurkan, M.V., Wysokowski, M., Meissner, H., Bulut, E., Kaya, M., and others. (2017) Isolation and identification of chitin from heavy mineralized skeleton of Suberea clavata (Verongida: Demospongiae: Porifera) marine demosponge. International Journal of Biological Macromolecules, 104, 1706–1712.10.1016/j.ijbiomac.2017.01.141Search in Google Scholar PubMed

Exley, C. (2015) A possible mechanism of biological silicification in plants. Frontiers in Plant Science, 6, 853.10.3389/fpls.2015.00853Search in Google Scholar PubMed PubMed Central

Ferrara, M.A., Dardano, P., De Stefano, L., Rea, I., Coppola, G., Rendina, I., Congestri, R., Antonucci, A., De Stefano, M., and De Tommasi, E. (2014) Optical properties of diatom nanostructured biosilica in Arachnoidiscus sp: Micro-optics from Mother Nature. PLoS ONE, 9, 3–10.10.1371/journal.pone.0103750Search in Google Scholar PubMed PubMed Central

Ferris, F.G., Beveridge, T.J., and Fyfe, W.S. (1986) Iron-silica crystallite nucleation by bacteria in a geothermal sediment. Nature, 320, 609–611.10.1038/320609a0Search in Google Scholar

Finkel, Z.V. (2016) Silicification in the microalgae. In M. Borowitzka, J. Beardall, and J. Raven, Eds., The Physiology of Microalgae, Developments in Applied Phycology, vol. 6, pp. 289–300. Springer.10.1007/978-3-319-24945-2_13Search in Google Scholar

Florkin, M., Ed. (1968) Chemical Zoology V2: Porifera, Coelenterata, and Platyhelminthes. Academic Press.Search in Google Scholar

Foissner, M., Weissenbacher, B., Krautgartner, W.-D., and Lutz-Meindl, U. (2009) A cover of glass: first report of biomineralized silicon in a ciliate, Maryna umbrellata (Ciliophora: Colpodea). Journal of Eukaryotic Microbiology, 56, 519–530.10.1111/j.1550-7408.2009.00431.xSearch in Google Scholar PubMed PubMed Central

Fuhrmann, T., Landwehr, S., El Rharbl-Kucki, M., and Sumper, M. (2004) Diatoms as living photonic crystals. Applied Physics B: Lasers and Optics, 78, 257–260.10.1007/s00340-004-1419-4Search in Google Scholar

Garrone, R. (1789) Phylogenesis of Connective Tissue. Morphological Aspects and Biosynthesis of Sponge Intercellular Matrix. The Quarterly Review of Biology, 54, 468–469.Search in Google Scholar

Goessling, J.W. (2017) Biophotonics of diatoms linking frustule structure to photobiology. Ph.D. thesis, University of Copenhagen.Search in Google Scholar

Gold, D.A., Grabenstatter, J., de Mendoza, A., Riesgo, A., Ruiz-Trillo, I., and Summons, R.E. (2016) Sterol and genomic analyses validate the sponge biomarker hypothesis. Proceedings of the National Academy of Sciences, 113, 2684–2689.10.1073/pnas.1512614113Search in Google Scholar PubMed PubMed Central

Gordon, R., Losic, D., Tiffany, M.A., Nagy, S.S., and Sterrenburg, F.A.S. (2009) The glass menagerie: diatoms for novel applications in nanotechnology. Trends in Biotechnology, 27, 116–127.10.1016/j.tibtech.2008.11.003Search in Google Scholar PubMed

Gower, L.B. (2008) Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chemical Reviews, 108, 4551–4627.10.1021/cr800443hSearch in Google Scholar PubMed PubMed Central

Goto, K. (1956) Effect of pH on polymerization of silicic acid. The Journal of Physical Chemistry, 60, 1007–1008.10.1021/j150541a046Search in Google Scholar

Granito, R.N., Custódio, M.R., and Rennó, A.C.M. (2017) Natural marine sponges for bone tissue engineering: The state of art and future perspectives. Journal of Biomedical Materials Research–Part B Applied Biomaterials, 105, 1717–1727.10.1002/jbm.b.33706Search in Google Scholar PubMed

Gröger, P., Poulsen, N., Klemm, J., Kröger, N., and Schlierf, M. (2016) Establishing super-resolution imaging for proteins in diatom biosilica. Scientific Reports, 6, 36824.10.1038/srep36824Search in Google Scholar PubMed PubMed Central

Grzesik, M., Romanowska-Duda, Z., Piotrowski, K., and Janas, R. (2015) Diatoms (Bacillariophyceae) as an effective base of a new generation of organic fertilizers. Przemysł Chemiczny, 94, 391–396.Search in Google Scholar

Guo, J., Li, C., Ling, S., Huang, W., Chen, Y., and Kaplan, D.L. (2017) Multiscale design and synthesis of biomimetic gradient protein/biosilica composites for interfacial tissue engineering. Biomaterials, 145, 44–55.10.1016/j.biomaterials.2017.08.025Search in Google Scholar PubMed PubMed Central

Haddad, F.S., and Kouyoumdjian, A. (1986) Silica stones in humans. Urologia Internationalis, 41, 70–76.10.1159/000281165Search in Google Scholar PubMed

Hamm, C.E. (2005) The evolution of advanced mechanical defenses and potential technological applications of diatom shells. Journal of Nanoscience and Nanotechnology, 5, 108–119.10.1166/jnn.2005.023Search in Google Scholar PubMed

Hamm, C.E. (2015) Evolution of Lightweight Structures: Analyses and Technical Applications, Springer.10.1007/978-94-017-9398-8Search in Google Scholar

Hamm, C.E., Merkel, R., Springer, O., Jurkojc, P., Maier, C., Prechtel, K., and Smetacek, V. (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature, 421, 841–843.10.1038/nature01416Search in Google Scholar PubMed

Heinemann, S., Heinemann, C., Ehrlich, H., Meyer, M., Baltzer, H., Worch, H., and Hanke, T. (2007a) A novel biomimetic hybrid material made of silicified collagen: perspectives for bone replacement. Advanced Engineering Materials, 9, 1061–1068.10.1002/adem.200700219Search in Google Scholar

Heinemann, S., Ehrlich, H., Knieb, C., and Hanke, T. (2007b) Biomimetically inspired hybrid materials based on silicified collagen. International Journal of Materials Research, 98, 603–608.10.3139/146.101519Search in Google Scholar

Hildebrand, M., and Lerch, S.J.L. (2015) Diatom silica biomineralization: parallel development of approaches and understanding. Seminars in Cell and Developmental Biology, 46, 27–35.10.1016/j.semcdb.2015.06.007Search in Google Scholar PubMed

Hirota, R., Hata, Y., Ikeda, T., Ishida, T., and Kuroda, A. (2010) The silicon layer supports acid resistance of Bacillus cereus spores. Journal of Bacteriology, 192, 111–116.10.1128/JB.00954-09Search in Google Scholar PubMed PubMed Central

Hu, C., Yu, L., and Wei, M. (2017) Biomimetic intrafibrillar silicification of collagen fibrils through a one-step collagen self-assembly/silicification approach. RSC Advances, 7, 34,624–34,632.10.1039/C7RA02935GSearch in Google Scholar

Hugo, R.C., Cady, S.L., and Smythe, W. (2011) The role of extracellular polymeric substances in the silicification of calothrix: evidence from microbial mat communities in hot springs at Yellowstone National Park, USA. Geomicrobiology Journal, 28, 667–675.10.1080/01490451.2010.511983Search in Google Scholar

Iler, R.K. (1978) The Chemistry of Silica-Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. Wiley.Search in Google Scholar

Illuminati, S., Annibaldi, A., Truzzi, C., and Scarponi, G. (2016) Heavy metal distribution in organic and siliceous marine sponge tissues measured by square wave anodic stripping voltammetry. Marine Pollution Bulletin, 111, 476–482.10.1016/j.marpolbul.2016.06.098Search in Google Scholar PubMed

Inagaki, F., Yokoyama, T., Doi, K., Izawa, E., and Ogata, S. (1998) Bio-deposition of amorphous silica by an extremely thermophilic bacterium Thermus spp. Bioscience, Biotechnology, and Biochemistry, 62, 1271–1272.10.1271/bbb.62.1271Search in Google Scholar PubMed

Inagaki, F., Motomura, Y., and Ogata, S. (2003) Microbial silica deposition in geothermal hot waters. Applied Microbiology and Biotechnology, 60, 605–611.10.1007/s00253-002-1100-ySearch in Google Scholar PubMed

Ivanov, V.K., Fedorov, P.P., Baranchikov, A.Y., and Osiko, V.V. (2014) Oriented attachment of particles: 100 years of investigations of non-classical crystal growth. Russian Chemical Reviews, 83, 1204–1222.10.1070/RCR4453Search in Google Scholar

Jones, L.H.P. Milne, A.A., and Sanders, J.V. (1960) Tabashir: an opal of plant origin. Science, 151, 464–466.10.1126/science.151.3709.464Search in Google Scholar PubMed

Judd, J.W. (1887) The relation of tabasheer to mineral substances. Nature, 35, 488–491.10.1038/035488b0Search in Google Scholar

Kamińska, A., Sprynskyy, M., Winkler, K., and Szymborski, T. (2017) Ultrasensitive SERS immunoassay based on diatom biosilica for detection of interleukins in blood plasma. Analytical and Bioanalytical Chemistry, 409, 6337–6347.10.1007/s00216-017-0566-5Search in Google Scholar PubMed PubMed Central

Klinowski, J., Cheng, C.F., Sanz, J., Rojo, J., and Mackay, A.L. (1998) Structural studies of tabasheer, an opal of plant origin. Philosophical Magazine A, 77, 201–216.10.1080/01418619808214238Search in Google Scholar

Knecht, M.R., and Wright, D.W. (2004) Amine-terminated dendrimers as biomimetic templates for silica nanosphere formation. Langmuir, 20, 4728–4732.10.1021/la0494019Search in Google Scholar PubMed

Konhauser, K.O., Phoenix, V.R., Bottrell, S.H., Adams, D.G., and Head, I.M. (2001) Microbial-silica interactions in Icelandic hot spring sinter: Possible analogues for some Precambrian siliceous stromatolites. Sedimentology, 48, 415–433.10.1046/j.1365-3091.2001.00372.xSearch in Google Scholar

Konhauser, K.O., Jones, B., Phoenix, V.R., Ferris, G., and Renaut, R.W. (2004) The microbial role in hot spring silicification. Ambio, 33, 552–558.10.1579/0044-7447-33.8.552Search in Google Scholar PubMed

Korhola, A., and Smol, J.P. (2001) Erbridians. In W.M. Last and J.P. Smol, Eds., Tracking Environmental Change Using Lake Sediments, p. 225–234. Springer.10.1007/0-306-47668-1_10Search in Google Scholar

Kotzsch, A., Pawolski, D., Milentyev, A., Shevchenko, A., Scheffel, A., Poulsen, N., Shevchenko, A., and Kröger, N. (2016) Biochemical composition and assembly of biosilica-associated insoluble organic matrices from the diatom Thalassiosirapseudonana. Journal of Biological Chemistry, 291, 4982–4997.10.1074/jbc.M115.706440Search in Google Scholar PubMed PubMed Central

Kotzsch, A., Gröger, P., Pawolski, D., Bomans, P.H.H., Sommerdijk, N.A.J.M., Schlierf, M., and Kröger, N. (2017) Silicanin-1 is a conserved diatom membrane protein involved in silica biomineralization. BMC Biology, 15, 65.10.1186/s12915-017-0400-8Search in Google Scholar PubMed PubMed Central

Kölliker, A. (1864) Der feinere Bau der Protozoen. Wilhelm Engelmann, Leipzig.Search in Google Scholar

Krajina, B.A., Proctor, A.C., Schoen, A.P., Spakowitz, A.J., and Heilshorn, S.C. (2018) Biotemplated synthesis of inorganic materials: An emerging paradigm for nanomaterial synthesis inspired by nature. Progress in Materials Science, 91, 1–23.10.1016/j.pmatsci.2017.08.001Search in Google Scholar

Kristiansen, J. (1986) Silica-scale bearing chrysophytes as environmental indicators. British Phycological Journal, 21, 425–436.10.1080/00071618600650491Search in Google Scholar

Kröger, N., and Poulsen, N. (2008) Diatoms—From cell wall biogenesis to nanotechnology. Annual Review of Genetics, 42, 83–107.10.1146/annurev.genet.41.110306.130109Search in Google Scholar PubMed

Kuhlman, A.M.J. (1963) The second most abundant element in the Earth’s crust. The Journal of The Minerals, Metals & Materials Society, 15, 502–505.10.1007/BF03378936Search in Google Scholar

Kumar, S., Milstein, Y., Brami, Y., Elbaum, M., and Elbaum, R. (2017a) Mechanism of silica deposition in sorghum silica cells. New Phytologist, 213, 791–798.10.1111/nph.14173Search in Google Scholar PubMed

Kumar, S., Soukup, M., and Elbaum, R. (2017b) Silicification in grasses: variation between different cell types. Frontiers in Plant Science, 8, 438.10.3389/fpls.2017.00438Search in Google Scholar PubMed PubMed Central

Laidler, J.R., and Stedman, K.M. (2010) Virus silicification under simulated hot spring conditions. Astrobiology, 10, 569–576.10.1089/ast.2010.0463Search in Google Scholar PubMed

Laidler, J.R., Shugart, J.A., Cady, S.L., Bahjat, K.S., and Stedman, K.M. (2013) Reversible inactivation and desiccation tolerance of silicified viruses. Journal of Virology, 87, 13,927–13,929.10.1128/JVI.02825-13Search in Google Scholar PubMed PubMed Central

Lalonde, S.V., Konhauser, K.O., Reysenbach, A.L., and Ferris, F.G. (2005) The experimental silicification of Aquificales and their role in hot spring sinter formation. Geobiology, 3, 41–52.10.1111/j.1472-4669.2005.00042.xSearch in Google Scholar

Lau, C.Y., Aitchison, J.C., and Pointing, S.B. (2008) Early colonization of thermal niches in a silica-depositing hot spring in central Tibet. Geobiology, 6, 136–146.10.1111/j.1472-4669.2007.00124.xSearch in Google Scholar PubMed

LeDuff, P., Roesijadi, G., and Rorrer, G.L. (2016) Micro-photoluminescence of single living diatom cells. Luminescence, 31, 1379–1383.10.1002/bio.3118Search in Google Scholar PubMed

Leonardo, S., Prieto-Simón, B., and Campas, M. (2016) Past, present and future of diatoms in biosensing. TrAC: Trends in Analytical Chemistry, 79, 276–285.10.1016/j.trac.2015.11.022Search in Google Scholar

Levi, C. (1963) Slcéroblastes et spiculogenese chez une éponge siliceuse. Comptes Rendus de l’Académie des Sciences, 256, 497–498.Search in Google Scholar

Li, D., Nielsen, M.H., Lee, J.R.I., Frandsen, C., Banfield, J.F., and De Yoreo, J.J. (2012) Direction-specific interactions control crystal growth by oriented attachment. Science, 336, 1014–1018.10.1126/science.1219643Search in Google Scholar PubMed

Losic, D., Ed. (2018) Diatom Nanotechnology: Progress and Emerging Applications. The Royal Society of Chemistry, Croydon, U.K.10.1039/9781788010160Search in Google Scholar

Losic, D., Mitchell, J.G., and Voelcker, N.H. (2009) Diatomaceous lessons in nanotechnology and advanced materials. Advanced Materials, 21, 2947–2958.10.1002/adma.200803778Search in Google Scholar

Madhumathi, K., Sudheesh Kumar, P.T., Kavya, K.C., Furuike, T., Tamura, H., Nair, S.V., and Jayakumar, R. (2009) Novel chitin/nanosilica composite scaffolds for bone tissue engineering applications. International Journal of Biological Macromolecules, 45, 289–292.10.1016/j.ijbiomac.2009.06.009Search in Google Scholar PubMed

Maldonado, M., Carmona, M.C., Uriz, M.J., and Cruzado, A. (1999) Decline in mesozoic reef-building sponges explained by silicon limitation. Nature, 401, 785–788.10.1038/44560Search in Google Scholar

Maldonado, M., Navarro, L., Grasa, A., Gonzalez, A., and Vaquerizo, I. (2011) Silicon uptake by sponges: a twist to understanding nutrient cycling on continental margins. Scientific Reports, 1, 2011.10.1038/srep00030Search in Google Scholar PubMed PubMed Central

Mann, S., and Williams, R.J.P. (1982) High resolution electron microscopy studies of the silica lorica in the choanoflagellate Stephanoeca diplocostata Ellis. Proceedings of the Royal Society B: Biological Sciences, 216, 137–146.10.1007/978-94-009-7944-4_40Search in Google Scholar

Marron, A.O., Alston, M.J., Heavens, D., Akam, M., Caccamo, M., Holland, P.W.H., and Walker, G. (2013) A family of diatom-like silicon transporters in the siliceous loricate choanoflagellates. Proceedings of the Royal Society B: Biological Sciences, 280, 20122543.10.1098/rspb.2012.2543Search in Google Scholar PubMed PubMed Central

Masse, S., Pisera, A., Laurent, G., and Coradin, T. (2016) A solid state NMR investigation of recent marine siliceous sponge spicules. Minerals, 6, 21.10.3390/min6010021Search in Google Scholar

Mastropietro, F., Godard, P., Burghammer, M., Chevallard, C., Daillant, J., Duboisset, J., Allain, M., Guenoun, P., Nouet, J., and Chamard, V. (2017) Revealing crystalline domains in a mollusc shell single-crystalline prism. Nature Materials, 16, 946–952.10.1038/nmat4937Search in Google Scholar PubMed

Mateu, M.G. (2011) Virus engineering: functionalization and stabilization. Protein Engineering, Design and Selection, 24, 53–63.10.1093/protein/gzq069Search in Google Scholar PubMed

Mayer, G. (2017) Mechanical energy dissipation in natural ceramic composites. Journal of the Mechanical Behavior of Biomedical Materials, 76, 21–29.10.1016/j.jmbbm.2017.06.019Search in Google Scholar PubMed

McCartney, K., Witkowski, J., Jordan, R.W., Daugbjerg, N., Malinverno, E., van Wezel, R., Kano, H., Abe, K., Scott, F., Schweizer, M., and others. (2014) Fine structure of silicoflagellate double skeletons. Marine Micropaleontology, 113, 10–19.10.1016/j.marmicro.2014.08.006Search in Google Scholar

Medarevic, D., Losic, D., and Ibric, S. (2016) Diatoms—nature materials with great potential for bioapplications. Hemijska Industrija, 70, 613–627.10.2298/HEMIND150708069MSearch in Google Scholar

Medlin, L.K. (2016) Evolution of the diatoms: major steps in their evolution and a review of the supporting molecular and morphological evidence. Phycologia, 55, 79–103.10.2216/15-105.1Search in Google Scholar

Merola, F., Memmolo, P., Miccio, L., Bianco, V., and Paturzo, M. (2015) Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy. Proceedings of the IEEE, 103, 192–204.10.1109/JPROC.2014.2375374Search in Google Scholar

Michels, J., Vogt, J., and Gorb, S.N. (2012) Tools for crushing diatoms—opal teeth in copepods feature a rubber-like bearing composed of resilin. Scientific Reports, 2, 465.10.1038/srep00465Search in Google Scholar PubMed PubMed Central

Michels, J., Vogt, J., Simon, P., and Gorb, S.N. (2015) New insights into the complex architecture of siliceous copepod teeth. Zoology, 118, 141–146.10.1016/j.zool.2014.11.001Search in Google Scholar PubMed

Millington, W.F., and Gawlik, S.R. (1967) Silica in the wall of pediastrum. Nature, 216, 68.10.1038/216068a0Search in Google Scholar PubMed

Mishra, M., Arukha, A.P., Bashir, T., Yadav, D., and Prasad, G.B.K.S. (2017) All new faces of diatoms: Potential source of nanomaterials and beyond. Frontiers in Microbiology, 8, 1239.10.3389/fmicb.2017.01239Search in Google Scholar PubMed PubMed Central

Monn, M.A., and Kesari, H. (2017a) A new structure-property connection in the skeletal elements of the marine sponge Tethya aurantia that guards against buckling instability. Scientific Reports, 7, 39547.10.1038/srep39547Search in Google Scholar PubMed PubMed Central

Monn, M.A., and Kesari, H. (2017b) Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture. Journal of the Mechanical Behavior of Biomedical Materials, 76, 69–75.10.1016/j.jmbbm.2017.05.032Search in Google Scholar PubMed

Monn, M.A., Weaver, J.C., Zhang, T., Aizenberg, J., and Kesari, H. (2015) New functional insights into the internal architecture of the laminated anchor spicules of Euplectella aspergillum. Proceedings of the National Academy of Sciences, 112, 4976–4981.10.1073/pnas.1415502112Search in Google Scholar PubMed PubMed Central

Monniot, F., Martoja, R., and Monniot, C. (1992) Silica distribution in ascidian ovaries, a tool for systematics. Biochemical Systematics and Ecology, 20, 541–552.10.1016/0305-1978(92)90008-2Search in Google Scholar

Moreno, M.D., Ma, K., Schoenung, J., and Dávila, L.P. (2015) An integrated approach for probing the structure and mechanical properties of diatoms: Toward engineered nanotemplates. Acta Biomaterialia, 25, 313–324.10.1016/j.actbio.2015.07.028Search in Google Scholar PubMed

Morrow, C., and Cardenas, P. (2015) Proposal for a revised classification of the Demospongiae (Porifera). Frontiers in Zoology, 12, 7.10.1186/s12983-015-0099-8Search in Google Scholar PubMed PubMed Central

Mugnaioli, E., Natalio, F., Schloßmacher, U., Wang, X., Müller, W.E.G., and Kolb, U. (2009) Crystalline nanorods as possible templates for the synthesis of amorphous biosilica during spicule formation in demospongiae. Chem-BioChem, 10, 683–689.10.1002/cbic.200800623Search in Google Scholar PubMed

Müller, W.E.G., Schloßmacher, U., Eckert, C., Krasko, A., Boreiko, A., Ushijima, H., Wolf, S.E., Tremel, W., Müller, I.M., and Schröder, H.C. (2007) Analysis of the axial filament in spicules of the demosponge Geodia cydonium: Different silicatein composition in microscleres (asters) and megascleres (oxeas and triaenes). European Journal of Cell Biology, 86, 473–487.10.1016/j.ejcb.2007.06.002Search in Google Scholar PubMed

Müller, W.E.G., Boreiko, A., Schlossmacher, U., Wang, X., Eckert, C., Kropf, K., Li, J., and Schroder, H.C. (2008a) Identification of a silicatein(-related) protease in the giant spicules of the deep-sea hexactinellid Monorhaphis chuni. Journal of Experimental Biology, 211, 300–309.10.1242/jeb.008193Search in Google Scholar PubMed

Müller, W.E.G., Wang, X., Kropf, K., Boreiko, A., Schloßmacher, U., Brandt, D., Schröder, H.C., and Wiens, M. (2008b) Silicatein expression in the hexactinellid Crateromorpha meyeri: The lead marker gene restricted to siliceous sponges. Cell and Tissue Research, 333, 339–351.10.1007/s00441-008-0624-6Search in Google Scholar PubMed

Müller, W.E.G., Mugnaioli, E., Schröder, H.C., Schloßmacher, U., Giovine, M., Kolb, U., and Wang, X. (2013) Hierarchical composition of the axial filament from spicules of the siliceous sponge Suberites domuncula: From biosilica-synthesizing nanofibrils to structure- and morphology-guiding triangular stems. Cell and Tissue Research, 351, 49–58.10.1007/s00441-012-1519-0Search in Google Scholar PubMed

Naik, R.R., Brott, L.L., Clarson, S.J., and Stone, M.O. (2002) Silica-precipitating peptides isolated from a combinatorial phage display peptide library. Journal of Nanoscience and Nanotechnology, 2, 95–100.10.1166/jnn.2002.074Search in Google Scholar PubMed

Nassif, N., and Livage, J. (2011) From diatoms to silica-based biohybrids. Chemical Society Reviews, 40, 849–859.10.1039/C0CS00122HSearch in Google Scholar

Natalio, F., Corrales, T.P., Panthöfer, M., Schollmeyer, D., Lieberwirth, I., Müller, W.E.G., Kappl, M., Butt, H.-J., and Tremel, W. (2013) Flexible minerals: self-assembled calcite spicules with extreme bending strength. Science, 339, 1298–302.10.1126/science.1216260Search in Google Scholar

Neethirajan, S., Gordon, R., and Wang, L. (2009) Potential of silica bodies (phytoliths) for nanotechnology. Trends in Biotechnology, 27, 461–467.10.1016/j.tibtech.2009.05.002Search in Google Scholar

Nichols, S., and Wörheide, G. (2005) Sponges: New Views of Old Animals. Integrative and Comparative Biology, 45, 333–334.10.1093/icb/45.2.333Search in Google Scholar

Nishizono, T., Eta, S., Enokida, H., and Nishiyama, K. (2004) Case report renal silica calculi in an infant. International Journal of Urology, 11, 119–121.10.1111/j.1442-2042.2004.00746.xSearch in Google Scholar

Niu, L., Jiao, K., Qi, Y., Yiu, C.K.Y. Ryou, H., Arola, D.D., Chen, J., Breschi, L., Pashley, D.H., and Tay, F.R. (2011) Infiltration of silica inside fibrillar collagen. Angewandte Chemie (International Edition), 50, 11688–11691.10.1002/anie.201105114Search in Google Scholar

Niu, L., Jiao, K., Ryou, H., Yiu, C.K.Y., Chen, J., Breschi, L., Arola, D.D., Pashley, D.H., and Tay, F.R. (2013) Multiphase intrafibrillar mineralization of collagen. Angewandte Chemie (International Edition), 52, 5762–5766.10.1002/anie.201210259Search in Google Scholar

Nomura, M., and Ishida, K.I. (2016) Fine-structural observations on siliceous scale production and shell assembly in the testate amoeba Paulinella chromatophora. Protist, 167, 303–318.10.1016/j.protis.2016.05.002Search in Google Scholar

Nowak, A.P., Lisowska-Oleksiak, A., Wicikowska, B., and Gazda, M. (2017) Biosilica from sea water diatoms algae—electrochemical impedance spectroscopy study. Journal of Solid State Electrochemistry, 21, 2251–2258.10.1007/s10008-017-3561-zSearch in Google Scholar

Ogawa, Y., Kimura, S., Wada, M., and Kuga, S. (2010) Crystal analysis and high-resolution imaging of microfibrillar α-chitin from Phaeocystis. Journal of Structural Biology, 171, 111–116.10.1016/j.jsb.2010.03.010Search in Google Scholar

Ogden, C.G. (1991a) The ultrastructure of Heleopera petricola an agglutinate soil amoeba; with comments on feeding and silica deposition. European Journal of Protistology, 27, 238–248.10.1016/S0932-4739(11)80061-1Search in Google Scholar

Ogden, C.G. (1991b) Ultrastructure of the vegetative organisation and initial stages of silica plate deposition in the soil testate amoeba Corythion dubium. Protoplasma, 163, 136–144.10.1007/BF01323337Search in Google Scholar

Orange, F., Disnar, J.R., Westall, F., Prieur, D., and Baillif, P. (2011) Metal cation binding by the hyperthermophilic microorganism, Archaea Methanocaldococcus jannaschii, and its effects on silicification. Palaeontology, 54, 953–964.10.1111/j.1475-4983.2011.01066.xSearch in Google Scholar

Orange, F., Lalonde, S.V., and Konhauser, K.O. (2013) Experimental simulation of evaporation-driven silica sinter formation and microbial silicification in hot spring systems. Astrobiology, 13, 163–176.10.1089/ast.2012.0887Search in Google Scholar

Papanthasiou, K.E., Turhanen, P., Brückner, S.I., Brunner, E., and Demadis, K.D. (2017) Smart, programmable and responsive injectable hydrogels for controlled release of cargo osteoporosis drugs. Scientific Reports, 7, 4743.10.1038/s41598-017-04956-3Search in Google Scholar

Parker, A.R., and Townley, H.E. (2007) Biomimetics of photonic nanostructures. Nature Nanotechnology, 2, 347–353.10.1142/9789814287005_0024Search in Google Scholar

Peng, X., Xu, H., Jones, B., Chen, S., and Zhou, H. (2013) Silicified virus-like nanoparticles in an extreme thermal environment: implications for the preservation of viruses in the geological record. Geobiology, 11, 511–526.10.1111/gbi.12052Search in Google Scholar

Pfister, L., Wetzel, C.E., Klaus, J., Martínez-Carreras, N., Antonelli, M., Teuling, A.J., and McDonnell, J.J. (2017) Terrestrial diatoms as tracers in catchment hydrology: a review. Wiley Interdisciplinary Reviews: Water, 4, e1241.10.1002/wat2.1241Search in Google Scholar

Pohnert, G. (2002) Biomineralization in diatoms mediated through peptide- and polyamine-assisted condensation of silica. Angewandte Chemie (International Edition), 41, 3167–3169.10.1002/1521-3773(20020902)41:17<3167::AID-ANIE3167>3.0.CO;2-RSearch in Google Scholar

Pokroy, B., Quintana, J.P., Caspi, E.N., Berner, A., and Zolotoyabko, E. (2004) Anisotropic lattice distortions in biogenic aragonite. Nature Materials, 3, 900–902.10.1038/nmat1263Search in Google Scholar

Pouget, E.M., Bomans, P.H.H., Goos, J.A.C.M., Frederik, P.M., de With, G., and Sommerdijk, N.A.J.M. (2009) The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science, 323, 1455–1458.10.1126/science.1169434Search in Google Scholar

Prado Figueroa, M. (2012) The growth of chalcedony (nanocrystalline silica) in electric organs from living marine fish. In Y. Mastai, Ed., Advances in Crystallization Processes. InTech.10.5772/48000Search in Google Scholar

Prado Figueroa, M., Flores, L., Sanchez, J., and Cesaretti, N. (2008a) Biosilicification (chalcedony) in human cerebral cortex, hippocampus and cerebellum from aged patients. Micron, 39, 859–867.10.1016/j.micron.2007.12.005Search in Google Scholar PubMed

Prado Figueroa, M., Barrera, F., and Cesaretti, N.N. (2008b) Chalcedony (a crystalline variety of silica): Biogenic origin in electric organs from living Psammobatis extenta (family Rajidae). Micron, 39, 1027–1035.10.1016/j.micron.2007.08.004Search in Google Scholar PubMed

Preari, M., Spinde, K., Lazic, J., Brunner, E., and Demadis, K.D. (2014) Bioinspired insights into silicic acid stabilization mechanisms: The dominant role of polyethylene glycol-induced hydrogen bonding. Journal of American Chemical Society, 136, 4236–4244.10.1021/ja411822sSearch in Google Scholar PubMed

Qi, Y., Wang, J., Wang, X., Cheng, J.J., and Wen, Z. (2017) Selective adsorption of Pb(II) from aqueous solution using porous biosilica extracted from marine diatom biomass: Properties and mechanism, Applied Surface Science, 396, 965–977.10.1016/j.apsusc.2016.11.069Search in Google Scholar

Ramachandran, G.N., and Kartha, G. (1955) Strucutre of collagen. Nature, 176, 593–595.10.1038/176593a0Search in Google Scholar PubMed

Reitner, J., and Thiel, V. (2011) Encyclopedia of Geobiology. Springer, Amsterdam.10.1007/978-1-4020-9212-1Search in Google Scholar

Ren, F., Campbell, J., Wang, X., Rorrer, G.L., and Wang, A.X. (2013) Enhancing surface plasmon resonances of metallic nanoparticles by diatom biosilica. Optics Express, 21, 15308.10.1364/OE.21.015308Search in Google Scholar PubMed

Renaudie, J., and Lazarus, D.B. (2013) On the accuracy of paleodiversity reconstructions: a case study in Antarctic Neogene radiolarians. Paleobiology, 39, 491–509.10.1666/12016Search in Google Scholar

Rich, A., and Crick, F.H.C. (1955) The structure of collagen. Nature, 175, 863–864.10.1142/9789813272682_0010Search in Google Scholar

Romann, J., Valmalette, J.-C., Chauton, M.S., Tranell, G., Einarsrud, M.-A., and Vadstein, O. (2015) Wavelength and orientation dependent capture of light by diatom frustule nanostructures. Scientific Reports, 5, 17403.10.1038/srep17403Search in Google Scholar PubMed PubMed Central

Royston, E.S., Brown, A.D., Harris, M.T., and Culver, J.N. (2009) Preparation of silica stabilized tobacco mosaic virus templates for the production of metal and layered nanoparticles. Journal of Colloid and Interface Science, 332, 402–407.10.1016/j.jcis.2008.12.064Search in Google Scholar PubMed

Sahebi, M., Hanafi, M.M., Siti Nor Akmar, A., Rafii, M.Y., Azizi, P., Tengoua, F.F., Nurul Mayzaitul Azwa, J., and Shabanimofrad, M. (2015) Importance of silicon and mechanisms of biosilica formation in plants. BioMed Research International 2015, ID 396010.10.1155/2015/396010Search in Google Scholar PubMed PubMed Central

Sandford, F. (2003) Physical and chemical analysis of the siliceous skeletons in six sponges of two groups (demospongiae and hexactinellida). Microscopy Research and Technique, 62, 336–355.10.1002/jemt.10400Search in Google Scholar PubMed

Sarikaya, M., Fong, H., Sunderland, N., Flinn, B.D., Mayer, G., Mescher, A., and Gaino, E. (2001) Biomimetic model of a sponge-spicular optical fiber—mechanical properties and structure. Journal of Materials Research, 16, 1420–1428.10.1557/JMR.2001.0198Search in Google Scholar

Sato, K., Ozaki, N., Nakanishi, K., Sugahara, Y., Oaki, Y., Salinas, C., Herrera, S., Kisailus, D., Imai, H., Collins, M.J., and others. (2017) Effects of nanostructured biosilica on rice plant mechanics. RSC Advances, 7, 13065–13071.10.1039/C6RA27317CSearch in Google Scholar

Saw, J.H., Mountain, B.W., Feng, L., Omelchenko, M. V., Hou, S., Saito, J.a., Stott, M.B., Li, D., Zhao, G., Wu, J., and others. (2008) Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1. Genome Biology, 9, R161.10.1186/gb-2008-9-11-r161Search in Google Scholar PubMed PubMed Central

Schenk, A.S., Eiben, S., Goll, M., Reith, L., Kulak, A.N., Meldrum, F.C., Jeske, H., Wege, C., and Ludwigs, S. (2017) Virus-directed formation of electrocatalytically active nanoparticle-based Co3O4 tubes. Nanoscale, 9, 6334–6345.10.1039/C7NR00508CSearch in Google Scholar

Schoeppler, V., Reich, E., Vacelet, J., Rosenthal, M., Pacureanu, A., Rack, A., Zaslansky, P., Zolotoyabko, E., and Zlotnikov, I. (2017) Shaping highly regular glass architectures: A lesson from nature. Science Advances, 3, eaao2047.10.1126/sciadv.aao2047Search in Google Scholar PubMed PubMed Central

Shimizu, K., Cha, J., Stucky, G.D., and Morse, D.E. (1998) Silicatein α: Cathepsin L-like protein in sponge biosilica. Proceedings of the National Academy of Sciences, 95, 6234–6238.10.1073/pnas.95.11.6234Search in Google Scholar PubMed PubMed Central

Shimizu, K., Amano, T., Bari, M.R., Weaver, J.C., Arima, J., and Mori, N. (2015) Glassin, a histidine-rich protein from the siliceous skeletal system of the marine sponge Euplectella, directs silica polycondensation. Proceedings of the National Academy of Sciences, 112, 11,449–11,454.10.1073/pnas.1506968112Search in Google Scholar PubMed PubMed Central

Shoulders, M.D., and Raines, R.T. (2009) Collagen structure and stability. Annual Review of Biochemistry, 78, 929–958.10.1146/annurev.biochem.77.032207.120833Search in Google Scholar PubMed PubMed Central

Sikorski, P., Hori, R., and Wada, M. (2009) Revisit of α-chitin crystal structure using high resolution X-ray diffraction data. Biomacromolecules, 10, 1100–1105.10.1021/bm801251eSearch in Google Scholar PubMed

Škaloud, P., Kristiansen, J., and Škaloudová, M. (2013) Developments in the taxonomy of silica-scaled chrysophytes—From morphological and ultrastructural to molecular approaches. Nordic Journal of Botany, 31, 385–402.10.1111/j.1756-1051.2013.00119.xSearch in Google Scholar

Skinner, H.C.W., and Ehrlich, H. (2013) Biomineralization. In K.K. Turekian and H.D. Holland, Eds., Treatise on Geochemistry, Biogeochemistry, pp. 105–162. Elsevier Science.10.1016/B978-0-08-095975-7.00804-4Search in Google Scholar

Sommer, M., Kaczorek, D., Kuzyakov, Y., and Breuer, J. (2006) Silicon pools and fluxes in soils and landscapes—A review. Journal of Plant Nutrition and Soil Science, 169, 310–329.10.1002/jpln.200521981Search in Google Scholar

Song, Z.Q., Wang, F.P., Zhi, X.Y., Chen, J.Q., Zhou, E.M., Liang, F., Xiao, X., Tang, S.K., Jiang, H.C., Zhang, C.L., and others. (2013) Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China. Environmental Microbiology, 15, 1160–1175.10.1111/1462-2920.12025Search in Google Scholar PubMed

Spinde, K., Kammer, M., Freyer, K., Ehrlich, H., Vournakis, J.N., and Brunner, E. (2011a) Biomimetic silicification of fibrous chitin from diatoms. Chemistry of Materials, 23, 2973–2978.10.1021/cm200677dSearch in Google Scholar

Spinde, K., Pachis, K., Antonakaki, I., Brunner, E., and Demadis, K.D. (2011b) Influence of polyamines and related macromolecules on silicic acid polycondensation: Relevance to “Soluble Silicon Pools”? Chemistry of Materials, 23, 4676–4687.10.1021/cm201988gSearch in Google Scholar

Spinthaki, A., Skordalou, G., Stathoulopoulou, A., and Demadis, K.D. (2016) Modified macromolecules in the prevention of silica scale. Pure and Applied Chemistry, 88, 1037–1047.10.1515/pac-2016-0807Search in Google Scholar

Spinthaki, A., Zerfass, C., Paulsen, H., Hobe, S., and Demadis, K.D. (2017) Pleiotropic role of recombinant silaffin-like cationic polypeptide P5S3: Peptide-induced silicic acid stabilization, silica formation and inhibition of silica dissolution. Chemistry Select, 2, 6–17.10.1002/slct.201601086Search in Google Scholar

Sprynskyy, M., Pomastowski, P., Hornowska, M., Król, A., Rafińska, K., and Buszewski, B. (2017) Naturally organic functionalized 3D biosilica from diatom microalgae. Materials and Design, 132, 22–29.10.1016/j.matdes.2017.06.044Search in Google Scholar

Steinmetz, N.F., Shah, S.N., Barclay, J.E., Rallapalli, G., Lomonossoff, G.P., and Evans, D.J. (2009) Virus-templated silica nanoparticles. Small, 5, 813–816.10.1002/smll.200801348Search in Google Scholar PubMed

Su, Y., Lundholm, N., Friis, S.M.M., and Ellegaard, M. (2015) Implications for photonic applications of diatom growth and frustule nanostructure changes in response to different light wavelengths. Nano Research, 8, 2363–2372.10.1007/s12274-015-0746-6Search in Google Scholar

Sumper, M., and Brunner, E. (2006) Learning from diatoms: Nature’s tools for the production of nanostructured silica. Advanced Functional Materials, 16, 17–26.10.1002/adfm.200500616Search in Google Scholar

Sun, J.L., Jiao, K., Niu, L.N., Jiao, Y., Song, Q., Shen, L.J., Tay, F.R., and Chen, J.H. (2017) Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, angiogenesis and bone regeneration. Biomaterials, 113, 203–216.10.1016/j.biomaterials.2016.10.050Search in Google Scholar PubMed

Sun, X.W., Zhang, Y.X., and Losic, D. (2017) Diatom silica, an emerging biomaterial for energy conversion and storage. Journal of Materials Chemistry A, 5, 8847–8859.10.1039/C7TA02045GSearch in Google Scholar

Swift, D.M., and Wheeler, A.P. (1992) Evidence of an organic matrix from diatom biosilica. Journal of Phycology, 28, 202–209.10.1111/j.0022-3646.1992.00202.xSearch in Google Scholar

Tabachnick, K., Janussen, D., and Menschenina, L. (2017) Cold biosilicification in Metazoan: psychrophilic glass sponges. In H. Ehrlich, Ed., Extreme Biomimetics, pp. 53–80. Springer, Cham, Switzerland.10.1007/978-3-319-45340-8_2Search in Google Scholar

Tabatabaei Dakhili, S.Y., Caslin, S.A., Faponle, A.S., Quayle, P., de Visser, S.P., and Wong, L.S. (2017) Recombinant silicateins as model biocatalysts in organosiloxane chemistry. Proceedings of the National Academy of Sciences, 114, 5285–5291.10.1073/pnas.1613320114Search in Google Scholar PubMed PubMed Central

Tarhan, L.G., Hood, A.V.S., Droser, M.L., Gehling, J.G., and Briggs, D.E.G. (2016) Exceptional preservation of soft-bodied Ediacara Biota promoted by silica-rich oceans. Geology, 44, 951–954.10.1130/abs/2016AM-286584Search in Google Scholar

Tesson, B., and Hildebrand, M. (2010) Extensive and intimate association of the cytoskeleton with forming silica in diatoms: Control over patterning on the meso- and micro-scale. PLoS ONE, 5, e14300.10.1371/journal.pone.0014300Search in Google Scholar PubMed PubMed Central

Thomson, T. (1836) Chemische analyse des tabashir. Journal für Praktische Chemie, 8, 21–25.10.1002/prac.18360080103Search in Google Scholar

Townley, H.E., Parker, A.R., and White-Cooper, H. (2008) Exploitation of diatom frustules for nanotechnology: Tethering active biomolecules. Advanced Functional Materials, 18, 369–374.10.1002/adfm.200700609Search in Google Scholar

Tréguer, P. J., and De La Rocha, C.L. (2013) The world ocean silica cycle. Annual Review of Marine Science, 5, 477–501.10.1146/annurev-marine-121211-172346Search in Google Scholar PubMed

Tréguer, P., Nelson, D.M., Van Bennekom, A.J., DeMaster, D.J., Leynaert, A., and Queguiner, B. (1995) The silica balance in the world ocean: A reestimate. Science, 268, 375–379.10.1126/science.268.5209.375Search in Google Scholar PubMed

Uriz, M.J. (2006) Mineral skeletogenesis in sponges. Canadian Journal of Zoology, 84, 322–356.10.1139/z06-032Search in Google Scholar

Uriz, M.J., Turon, X., Becerro, M.A., and Agell, G. (2003) Siliceous spicules and skeleton frameworks in sponges: Origin, diversity, ultrastructural patterns, and biological functions. Microscopy Research and Technique, 62, 279–299.10.1002/jemt.10395Search in Google Scholar PubMed

van Soest, R.W.M., Boury-Esnault, N., Vacelet, J., Dohrmann, M., Erpenbeck, D., de Voogd, N.J., Santodomingo, N., Vanhoorne, B., Kelly, M., and Hooper, J.N.A. (2012) Global diversity of sponges (Porifera). PLoS ONE, 7, e35105.10.1371/journal.pone.0035105Search in Google Scholar PubMed PubMed Central

Vybornyi, M., Vyborna, Y., and Häner, R. (2017) Silica Mineralization of DNA-inspired 1D and 2d supramolecular polymers. Chemistry Open, 6, 488–491.10.1002/open.201700080Search in Google Scholar PubMed PubMed Central

Wagner, D., and Kelley, C.D. (2017) The largest sponge in the world? Marine SBiodiversity, 47, 367–368.10.1007/s12526-016-0508-zSearch in Google Scholar

Wallace, A.F., DeYoreo, J.J., and Dove, P.M. (2009) Kinetics of silica nucleation on carboxyl- and amine-terminated surfaces: insights for biomineralization. Journal of the American Chemical Society, 131, 5244–50.10.1021/ja809486bSearch in Google Scholar PubMed

Walsh, P.J., Clarke, S.A., Julius, M., and Messersmith, P.B. (2017) Exploratory testing of diatom silica to map the role of material attributes on cell fate. Scientific Reports, 7, 14138.10.1038/s41598-017-13285-4Search in Google Scholar PubMed PubMed Central

Wang, G., Wang, H.-J., Zhou, H., Nian, Q.-G., Song, Z., Deng, Y.-Q., Wang, X., Zhu, S.-Y., Li, X.-F., Qin, C.-F., and Tang, R. (2015) Hydrated silica exterior produced by biomimetic silicification confers viral vaccine heat-resistance. ACS Nano, 9, 799–808.10.1021/nn5063276Search in Google Scholar PubMed

Wang, G., Zhou, H., Nian, Q.-G., Yang, Y., Qin, C.-F., and Tang, R. (2016) Robust vaccine formulation produced by assembling a hybrid coating of polyethyleneimine-silica. Chemical Science, 7, 1753–1759.10.1039/C5SC03847BSearch in Google Scholar

Wang, X., Schröder, H.C., Wiens, M., Ushijima, H., and Müller, W.E.G. (2012a) Bio-silica and bio-polyphosphate: applications in biomedicine (bone formation). Current Opinion in Biotechnology, 23, 570–578.10.1016/j.copbio.2012.01.018Search in Google Scholar PubMed

Wang, X., Deng, Y., Li, S., Wang, G., Qin, E., Xu, X., Tang, R., and Qin, C. (2012b) Biomineralization-based virus shell-engineering: Towards neutralization escape and tropism expansion. Advanced Healthcare Materials, 1, 443–449.10.1002/adhm.201200034Search in Google Scholar PubMed

Wang, X.H., Zhang, X.H., Schröder, H.C., and Müller, W.E.G. (2009) Giant basal spicule from the deep-sea glass sponge Monorhaphis chuni: synthesis of the largest bio-silica structure on Earth by silicatein. Frontiers of Materials Science in China, 3, 226–240.10.1007/s11706-009-0044-xSearch in Google Scholar

Weaver, J.C., and Morse, D.E. (2003) Molecular biology of demosponge axial filaments and their roles in biosilicification. Microscopy Research and Technique, 62, 356–367.10.1002/jemt.10401Search in Google Scholar PubMed

Weaver, J.C., Aizenberg, J., Fantner, G.E., Kisailus, D., Woesz, A., Allen, P., Fields, K., Porter, M.J., Zok, F.W., Hansma, P.K., and others. (2007) Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. Journal of Structural Biology, 158, 93–106.10.1016/j.jsb.2006.10.027Search in Google Scholar PubMed

Weaver, J.C., Milliron, G.W., Allen, P., Miserez, A., Rawal, A., Garay, J., Thurner, P.J., Seto, J., Mayzel, B., Friesen, L.J., and others. (2010) Unifying design strategies in demosponge and hexactinellid skeletal systems. Journal of Adhesion, 86, 72–95.10.1080/00218460903417917Search in Google Scholar

Weiher, F., Schatz, M., Steinem, C., and Geyer, A. (2013) Silica precipitation by synthetic minicollagens. Biomacromolecules, 14, 683–687.10.1021/bm301737mSearch in Google Scholar PubMed

Weiner, S., and Addadi, L. (2011) Crystallization pathways in biomineralization. Annual Review of Materials Research, 41, 21–40.10.1146/annurev-matsci-062910-095803Search in Google Scholar

Wen, A.M., and Steinmetz, N.F. (2016) Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chemical Society Reviews, 45, 4074–4126.10.1039/C5CS00287GSearch in Google Scholar PubMed PubMed Central

Werner, P., Blumtritt, H., Zlotnikov, I., Graff, A., Dauphin, Y., and Fratzl, P. (2015) Electron microscope analyses of the bio-silica basal spicule from the Monorhaphis chuni sponge. Journal of Structural Biology, 191, 165–174.10.1016/j.jsb.2015.06.018Search in Google Scholar PubMed

Werner, P., Blumtritt, H., and Natalio, F. (2017) Organic crystal lattices in the axial filament of silica spicules of Demospongiae. Journal of Structural Biology, 198, 186–195.10.1016/j.jsb.2017.03.005Search in Google Scholar PubMed

Wilhelm, S., and Kind, M. (2015) Influence of pH, temperature and sample size on natural and enforced syneresis of precipitated silica. Polymers, 7, 2504–2521.10.3390/polym7121528Search in Google Scholar

Wujek, D.E., Adesalu, T.A., and Nwankwo, D.I. (2005) Silica-scaled chrysophyceae and synurophyceae (chrysophyta) from Nigeria. II. Lake Lekki. Tropical Freshwater Biology, 12/13, 99–103.10.4314/tfb.v12i1.20880Search in Google Scholar

Wujek, D.E., Kadiri, M.O., and Dziedzic, R.M. (2010) Silica-scaled chrysophyceae and synurophyceae from Nigeria. III. Chrysophytes from rivers of Edo state. Fottea, 10, 93–98.10.5507/fot.2010.004Search in Google Scholar

Wysokowski, M., Petrenko, I., Stelling, A., Stawski, D., Jesionowski, T., and Ehrlich, H. (2015) Poriferan chitin as a versatile template for extreme biomimetics. Polymers, 7, 235–265.10.3390/polym7020235Search in Google Scholar

Wysokowski, M., Bartczak, P., Zółtowska-Aksamitowska, S., Chudzińska, A., Piasecki, A., Langer, E., Bazhenov, V. V., Petrenko, I., Noga, T., Stelling, A.L., and others. (2017) Adhesive Stalks of Diatom Didymosphenia geminata as a Novel Biological Adsorbent for Hazardous Metals Removal. Clean Soil, Air, Water, 45, 1600678.10.1002/clen.201600678Search in Google Scholar

Xiong, W., Yang, Z., Zhai, H., Wang, G., Xu, X., Ma, W., and Tang, R. (2013) Alleviation of high light-induced photoinhibition in cyanobacteria by artificially conferred biosilica shells. Chemical Communications, 49, 7525–7527.10.1039/c3cc42766hSearch in Google Scholar

Yamanaka, S., Yano, R., Usami, H., Hayashida, N., Ohguchi, M., Takeda, H., and Yoshino, K. (2008) Optical properties of diatom silica frustule with special reference to blue light. Journal of Applied Physics, 103, 74701.10.1063/1.2903342Search in Google Scholar

Yang, W., Lopez, P.J., and Rosengarten, G. (2011) Diatoms: self assembled silicananostructures, and templates for bio/chemical sensors and biomimetic membranes. The Analyst, 136, 42–53.10.1039/C0AN00602ESearch in Google Scholar

Yee, N., Phoenix, V.R., Konhauser, K.O., Benning, L.G., and Ferris, F.G. (2003) The effect of cyanobacteria on silica precipitation at neutral pH: Implications for bacterial silicification in geothermal hot springs. Chemical Geology, 199, 83–90.10.1016/S0009-2541(03)00120-7Search in Google Scholar

Yoneda, S., Ito, F., Yamanaka, S., and Usami, H. (2016) Optical properties of nanoporous silica frustules of a diatom determined using a 10 mm microfiber probe. Japanese Journal of Applied Physics, 55, 72001.10.7567/JJAP.55.072001Search in Google Scholar

Zhang, W., Luo, X., Niu, L., Yang, H., Yiu, C.K., Wang, T., Zhou, L., Mao, J., Huang, C., Pashley, D.H., and others. (2015) Biomimetic intrafibrillar mineralization of type I collagen with intermediate precursors-loaded mesoporous carriers. Scientific Reports, 5, 11199.10.1038/srep11199Search in Google Scholar PubMed PubMed Central

Zhang, Y., Reed, B.W., Chung, F.R., and Koski, K.J. (2015) Mesoscale elastic properties of marine sponge spicules. Journal of Structural Biology, 193, 67–74.10.1016/j.jsb.2015.11.009Search in Google Scholar PubMed

Zlotnikov, I., Werner, P., Blumtritt, H., Graff, A., Dauphin, Y., Zolotoyabko, E., and Fratzl, P. (2014) A perfectly periodic three-dimensional protein/silica mesoporous structure produced by an organism. Advanced Materials, 26, 1682–1687.10.1002/adma.201304696Search in Google Scholar PubMed

Zlotnikov, I., Werner, P., Fratzl, P., and Zolotoyabko, E. (2015) Eshelby twist as a possible source of lattice rotation in a perfectly ordered protein/silica structure grown by a simple organism. Small, 11, 5636–5641.10.1002/smll.201502244Search in Google Scholar PubMed

Zolotoyabko, E. (2017) Anisotropic lattice distortions in biogenic minerals originated from strong atomic interactions at organic/inorganic interfaces. Advanced Materials Interfaces, 4, 1600189.10.1002/admi.201600189Search in Google Scholar

Received: 2017-12-11
Accepted: 2018-2-8
Published Online: 2018-4-30
Published in Print: 2018-5-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Review
  2. Biosilica as a source for inspiration in biological materials science
  3. Ab initio study of water speciation in forsterite: Importance of the entropic effect
  4. Surface-modified phillipsite-rich tuff from the Campania region (southern Italy) as a promising drug carrier: An ibuprofen sodium salt trial
  5. Structure of low-order hemimorphite produced in a Zn-rich environment by cyanobacterium Leptolingbya frigida
  6. Formation of dolomite catalyzed by sulfate-driven anaerobic oxidation of methane: Mineralogical and geochemical evidence from the northern South China Sea
  7. Anisotropic growth of olivine during crystallization in basalts from Hawaii: Implications for olivine fabric development
  8. Melting experiments on Fe–Si–S alloys to core pressures: Silicon in the core?
  9. High-pressure phase behavior and equations of state of ThO2 polymorphs
  10. Mafic inputs into the rhyolitic magmatic system of the 2.08 Ma Huckleberry Ridge eruption, Yellowstone
  11. Toward the wider application of 29Si NMR spectroscopy to paramagnetic transition metal silicate minerals and glasses: Fe(II), Co(II), and Ni(II) silicates
  12. Equations of state and phase boundary for stishovite and CaCl2-type SiO2
  13. Insight on gem opal formation in volcanic ash deposits from a supereruption: A case study through oxygen and hydrogen isotopic composition of opals from Lake Tecopa, California, U.S.A
  14. Revisiting the crystal structure of dickite: X-ray diffraction, solid-state NMR, and DFT calculations study
  15. Temperature and pressure effects on the partitioning of V and Sc between clinopyroxene and silicate melt: Implications for mantle oxygen fugacity
  16. Letter
  17. Why natural monazite never becomes amorphous: Experimental evidence for alpha self-healing
  18. New Mineral Names
  19. Book Review
  20. Book Review: Glaciovolcanism on Earth and Mars: Products, Processes and Paleoenvironmental Significance
Downloaded on 13.10.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2018-6429/html
Scroll to top button