Startseite Ab initio calculations of uranium and thorium storage in CaSiO3-perovskite in the Earth’s lower mantle
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ab initio calculations of uranium and thorium storage in CaSiO3-perovskite in the Earth’s lower mantle

  • Samuel N. Perry EMAIL logo , Jeffrey S. Pigott und Wendy R. Panero
Veröffentlicht/Copyright: 9. Februar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Earth’s mantle convection is powered in part by the radiogenic heat released by the decay of 238U, 235U, 232Th, and 40K. We present ab initio calculations of uranium and thorium incorporation in CaSiO3-perovskite with and without aluminum, and propose that aluminous calcium silicate perovskite is the likely host of uranium and thorium in the lower mantle. At 15 GPa, the enthalpies of solution into aluminum-free CaSiO3-perovskite are 10.34 kJ/mol for U4+ and 12.52 kJ/mol for Th4+ in SiO2 saturated systems, while the enthalpies are 17.09 kJ/mol and 19.27 kJ/mol, respectively, in CaO saturated systems. Coupled substitution of U4+ and Th4+ with aluminum is thermodynamically favored, with the enthalpies of solution negative for U4+ and near 0 kJ/mol for Th4+ throughout the stability field of CaSiO3-perovskite. Therefore, U incorporation into CaSiO3-perovskite is spontaneous in the presence of aluminum while Th forms a near ideal solid solution, implying these elements are potentially compatible with respect to partial melting in the transition zone and lower mantle. Furthermore, the solid solution reactions of U4+ and Th4+ are broadly similar to each other, suggesting a restriction on the fractionation of these actinides between the upper and lower mantle. U and Th compatibility in the presence of Al has implications regarding actinide transport into the deep mantle within subducting slabs and the geochemical content of seismic anomalies at the core-mantle boundary.


Present address: Department of Civil & Environmental Engineering; University of Notre Dame, Notre Dame, IN 46556, U.S.A

Acknowledgments

Support to S.N.P. from the Ohio State Undergraduate Research Scholarship, the Friends of Orton Hall fund grant and the Columbus Rock and Mineral Society scholarship. Further support for this research comes from NSF EAR 09-55647 and NSF EAR-PF 14-52545 to W.R.P. and J.S.P., respectively. All calculations were run at the Ohio Supercomputer Center, under computing award PAS0238-1 to W.R.P. We thank Bethany Chidester, Alexandre Corgne, and Razvan Caracas for their insightful reviews of this manuscript and their constructive feedback.

References Cited

Akber, S.B. (2003) A theoretical study of perovskite solid solutions: Towards an interpretation of seismic tomographic data. Ph.D. thesis, University of California, Berkeley.Suche in Google Scholar

Arevalo, R. Jr., McDonough, W.F., and Luong, M. (2009) The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution. Earth and Planetary Science Letters, 278, 361–369.10.1016/j.epsl.2008.12.023Suche in Google Scholar

Bauer, J.D., Labs, S., Weiss, S., Bayarjargal, L., Morgenroth, W., Milman, V., Perlov, A., Curtius, H., Bosbach, D., Zänker, H., and Winkler, B. (2014) High-pressure phase transition of coffinite, USiO4. The Journal of Physical Chemistry C, 118, 25,141–25,149.10.1021/jp506368qSuche in Google Scholar

Beattie, P. (1993) Uranium–thorium disequilibria and partitioning on melting of garnet peridotite. Nature, 363, 63–65.10.1038/363063a0Suche in Google Scholar

Bose, P.P., Mittal, R., and Chaplot, S.L. (2009) Lattice dynamics and high pressure phase stability of zircon structured natural silicates. Physical Review B, 79, 174301.10.1103/PhysRevB.79.174301Suche in Google Scholar

Bruno, J., and Ewing, R.C. (2006) Spent nuclear fuel. Elements, 2, 343–349.10.2113/gselements.2.6.343Suche in Google Scholar

Caracas, R., Wentzcovitch, R., Price, G.D., and Brodholt, J. (2005). CaSiO3 perovskite at lower mantle pressures. Geophysical Research Letters, 32.10.1029/2004GL022144Suche in Google Scholar

Corgne, A., and Wood, B.J. (2002) CaSiO3 and CaTiO3 perovskite-melt partitioning of trace elements: Implications for gross mantle differentiation. Geophysical Research Letters, 29, doi:10.1029/2001GL014398doi:10.1029/2001GL014398Suche in Google Scholar

Corgne, A., Liebske, C., Wood, B.J., Rubie, D.C., and Frost, D.J. (2005) Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskite reservoir. Geochimica et Cosmochimica Acta, 69, 485–496.10.1016/j.gca.2004.06.041Suche in Google Scholar

de Koker, N.P., Stixrude, L., and Karki, B.B. (2008) Thermodynamics, structure, dynamics, and freezing of Mg2SiO4 liquid at high pressure. Geochimica et Cosmochimica Acta, 72, 1427–1441.10.1016/j.gca.2007.12.019Suche in Google Scholar

Dorado, B., Amadon, B., Freyss, M., and Bertolus, M. (2009) DFT+U calculations of the ground state and metastable states of uranium dioxide. Physical Review B, 79, 235125.10.1103/PhysRevB.79.235125Suche in Google Scholar

Downs, R.T., and Hall-Wallace, M. (2003) The American Mineralogist crystal structure database. American Mineralogist, 88, 247–250.Suche in Google Scholar

Dudarev, S.L., Manh, D.N., and Sutton, A.P. (1997) Effect of Mott-Hubbard correlations on the electronic structure and structural stability of uranium dioxide. Philosophical Magazine B, 75, 613–628.10.1080/13642819708202343Suche in Google Scholar

Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., and Sutton, A.P. (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Physical Review B, 57, 1505–1509.10.1103/PhysRevB.57.1505Suche in Google Scholar

Fiquet, G., Richet, P., and Montagnac, G. (1999) High-temperature thermal expansion of lime, periclase, corundum and spinel. Physics and Chemistry of Minerals, 27, 103–111.10.1007/s002690050246Suche in Google Scholar

Frost, D.J., and McCammon, C.A. (2008) The redox state of Earth’s mantle. Annual Review Earth and Planetary Science, 36, 389–420.10.1146/annurev.earth.36.031207.124322Suche in Google Scholar

Gautron, L., Greaux, S., Andrault, D., Bolfan-Casanova, N., Guignot, N., and Bouhifd, M.A. (2006) Uranium in the Earth’s lower mantle. Geophysical Research Letters, 33, L23301, doi:10.1029/2006GL027508.doi:10.1029/2006GL027508Suche in Google Scholar

Geng, H.Y., Chen, Y., Kaneta, Y., and Kinoshita, M. (2007) Structural behavior of uranium dioxide under pressure by LSDA+U calculations. Physical Review B, 75, 054111.10.1103/PhysRevB.75.054111Suche in Google Scholar

Gréaux, S., Gautron, L., Andrault, D., Bolfan-Casanova, N., Guignot, N., and Haines, J. (2008) Structural characterization of natural UO2 at pressures up to 82 GPa and temperatures up to 2200 K. American Mineralogist, 93, 1090–1098.10.2138/am.2008.2735Suche in Google Scholar

Gréaux, S., Gautron, L., Andrault, D., Bolfan-Casanova, N., Guignot, N., and Bouhifd, M.A. (2009) Experimental high pressure and high temperature study of the incorporation of uranium in Al-rich CaSiO3 perovskite. Physics of the Earth and Planetary Interiors, 174, 254–263.10.1016/j.pepi.2008.06.010Suche in Google Scholar

Gréaux, S., Farges, F., Gautron, L., Trcera, N., Flank, A., and Lagarde, P. (2012) X-ray absorption near edge structure (XANES) study of the speciation of uranium and thorium in Al-rich CaSiO3 perovskite. American Mineralogist, 97, 100–109.10.2138/am.2012.3811Suche in Google Scholar

Hirose, K., Shimizu, N., van Westrenen, W., and Fei, Y. (2004) Trace element partitioning in Earth’s lower mantle and implications for geochemical consequences of partial melting at the core–mantle boundary. Physics of the Earth and Planetary Interiors, 146, 249–260.10.1016/j.pepi.2002.11.001Suche in Google Scholar

Idiri, M., Le Bihan, T., Heathman, S., and Rebizant, J. (2004) Behavior of actinide dioxides under pressure: UO2 and ThO2. Physical Review B, 70, 014113.10.1103/PhysRevB.70.014113Suche in Google Scholar

Irifune, T. (1994) Absence of an aluminous phase in the upper part of the Earth’s lower mantle. Nature, 370, 131–133.10.1038/370131a0Suche in Google Scholar

Irifune, T., and Ringwood, A.E. (1993) Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth and Planetary Science Letters, 117, 101–110.10.1016/0012-821X(93)90120-XSuche in Google Scholar

Javoy, M., and Kaminski, E. (2014) Earth’s uranium and thorium content and geoneutrinos fluxes based on enstatite chondrites. Earth and Planetary Science Letters, 407, 1–8.10.1016/j.epsl.2014.09.028Suche in Google Scholar

Kesson, S.E., Gerald, J.F., and Shelley, J.M.G. (1994) Mineral chemistry and density of subducted basaltic crust at lower-mantle pressures. Nature, 372, 767–769.10.1038/372767a0Suche in Google Scholar

Kesson, S.E., Gerald, J.F., and Shelley, J.M. (1998) Mineralogy and dynamics of a pyrolite lower mantle. Nature, 393, 252–255.10.1038/30466Suche in Google Scholar

Klotz, S., Chervin, J-C., Munsch, P., and Le Marchand, G. (2009) Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D Applied Physics, 42, 075413.10.1088/0022-3727/42/7/075413Suche in Google Scholar

Korenaga, J. (2008) Urey ratio and the structure and evolution of Earth’s mantle. Reviews of Geophysics, 46, RG2007, doi:10.1029/2007RG000241.doi:10.1029/2007RG000241Suche in Google Scholar

Kresse, G., and Furthmüller, J. (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 6, 15–50.Suche in Google Scholar

Kresse, G., and Joubert, D. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59, 1758–1775.10.1103/PhysRevB.59.1758Suche in Google Scholar

Labrosse, S., Hernlund, J., and Coltice, N. (2007) A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature, 450, 866–869.10.1038/nature06355Suche in Google Scholar PubMed

Liechtenstein, A., Anisimov, V., and Zaanen, J. (1995) Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Physical Review B, 52, R5467–R5470.10.1103/PhysRevB.52.R5467Suche in Google Scholar

Liu, L. (1982) Phase transformations in MSiO4 compounds at high pressures and their geophysical implications. Earth and Planetary Science Letters, 57, 110–116.10.1016/0012-821X(82)90177-7Suche in Google Scholar

McDonough, W.F., and Sun, S. (1995) The composition of the Earth. Chemical Geology, 120, 223–253.10.1016/S0074-6142(01)80077-2Suche in Google Scholar

Nishio-Hamane, D., Seto, Y., Nagai, T., and Fujino, K. (2007) Ferric iron and aluminum partitioning between MgSiO3-and CaSiO3-perovskites under oxidizing conditions. Journal of Mineralogical and Petrological Sciences, 102, 291–297.10.2465/jmps.061103Suche in Google Scholar

Nishio-Hamane, D., Dekura, H., Seto, Y., and Yagi, T. (2015) Theoretical and experimental evidence for the post-cotunnite phase transition in zirconia at high pressure. Physics and Chemistry of Minerals, 42, 385–392.10.1007/s00269-014-0728-3Suche in Google Scholar

Qiang, L., Jun-Sheng, Y., Duo-Hui, H., Qi-Long, C., and Fan-Hou, W. (2014) Phase transition and thermodynamic properties of ThO2: Quasi-harmonic approximation calculations and anharmonic effects. Chinese Physics B, 23, 017101.10.1088/1674-1056/23/1/017101Suche in Google Scholar

Richet, P., Mao, H., and Bell, P.M. (1988) Static compression and equation of state of CaO to 1.35 Mbar. Journal of Geophysical Research: Solid Earth, 93, 15279–15288.10.1029/JB093iB12p15279Suche in Google Scholar

Ringwood, A.E., Kesson, S.E., Ware, N.G., Hibberson, W., and Major, A. (1979) Immobilisation of high level nuclear reactor wastes in SYNROC. Nature, 278, 219–223.10.1038/278219a0Suche in Google Scholar

Samuel, H., and Farnetani, C.G. (2003) Thermochemical convection and helium concentrations in mantle plumes. Earth and Planetary Science Letters, 207, 39–56.10.1016/S0012-821X(02)01125-1Suche in Google Scholar

Shannon, R.D., and Prewitt, C.T. (1969) Effective ionic radii in oxides and fluorides. Acta Crystallographica, B25, 925–946.10.1107/S0567740869003220Suche in Google Scholar

Shim, S.H., Jeanloz, R., and Duffy, T.S. (2002) Tetragonal structure of CaSiO3 perovskite above 20 GPa. Geophysical Research Letters, 29.Suche in Google Scholar

Song, H.X., Liu, L., Geng, H.Y., and Wu, Q. (2013) First-principle study on structural and electronic properties of CeO2 and ThO2 under high pressures. Physical Review B, 87, 184103.10.1103/PhysRevB.87.184103Suche in Google Scholar

Šrámek, O., McDonough, W.F., Kite, E.S., Lekić, V., Dye, S.T., and Zhong, S. (2013) Geophysical and geochemical constraints on geoneutrino fluxes from Earth’s mantle. Earth and Planetary Science Letters, 361, 356–366.10.1016/j.epsl.2012.11.001Suche in Google Scholar

Taura, H., Yurimoto, H., Kato, T., and Sueno, S. (2001) Trace element partitioning between silicate perovskites and ultracalcic melt. Physics of the Earth and Planetary Interiors, 124, 25–32.10.1016/S0031-9201(00)00221-1Suche in Google Scholar

Taylor, M., and Ewing, R.C. (1978) The crystal structures of the ThSiO4 polymorphs: huttonite and thorite. Acta Crystallographica, B34, 1074–1079.10.1107/S0567740878004951Suche in Google Scholar

Walter, M.J., Nakamura, E., Trønnes, R.G., and Frost, D.J. (2004) Experimental constraints on crystallization differentiation in a deep magma ocean. Geochimica et Cosmochimica Acta, 68, 4267–4284.10.1016/j.gca.2004.03.014Suche in Google Scholar

Wang, B., Shi, H., Li, W., and Zhang, P. (2010) First-principles study of ground-state properties and high pressure behavior of ThO2. Journal of Nuclear Materials, 399, 181–188.10.1016/j.jnucmat.2010.01.017Suche in Google Scholar

White, W.M. (2015) Isotopes, DUPAL, LLSVPs, and Anekantavada. Chemical Geology, 419, 10–28.10.1016/j.chemgeo.2015.09.026Suche in Google Scholar

Wood, B.J., Blundy, J.D., and Robinson, J.A.C. (1999) The role of clinopyroxene in generating U-series disequilibrium during mantle melting. Geochimica et Cosmochimica Acta, 63, 1613–1620.10.1016/S0016-7037(98)00302-0Suche in Google Scholar

Wyckoff, R. (1963) Structures of the compounds RX2. In Crystal Structures 1, 2nd ed., 239–243. Interscience Publishers, New York.Suche in Google Scholar

Zhang, F.X., Pointeau, V., Shuller, L.C., Reaman, D.M., Lang, M., Liu, Z., Hu, J., Panero, W.R., Becker, U., Poinssot, C., and Ewing, R.C. (2009) Structural transitions and electron transfer in coffinite, USiO4, at high pressure. American Mineralogist, 94, 916–920.10.2138/am.2009.3111Suche in Google Scholar

Received: 2015-4-18
Accepted: 2015-9-19
Published Online: 2017-2-9
Published in Print: 2017-2-1

© 2017 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Highlights & Breakthroughs
  2. Rover observations in Gusev Crater: Evidence for a style of weathering unique to Mars?
  3. Special collection: Martian rocks and minerals: perspectives from rovers, orbiters, and meteorites
  4. Wishstone to Watchtower: Amorphous alteration of plagioclase-rich rocks in Gusev crater, Mars
  5. Special collection: geology and geobiology of lassen volcanic national park
  6. Oxygen isotope geochemistry of mafic phenocrysts in primitive mafic lavas from the southernmost Cascade Range, California
  7. Special collection: Dynamics of magmatic processes
  8. Geochemical and radiogenic isotope probes of Ischia volcano, Southern Italy: Constraints on magma chamber dynamics and residence time
  9. Fluids In The Crust
  10. Experimental tests on achieving equilibrium in synthetic fluid inclusions: Results for scheelite, molybdenite, and gold solubility at 800 °C and 200 MPa
  11. Special collection: Earth analogs for martian geological materials and processes
  12. Mineralogy and chemistry of San Carlos high-alkali basalts: Analyses of alteration with application for Mars exploration
  13. Special collection: Water in nominally hydrous and anhydrous minerals
  14. Effect of iron and trivalent cations on OH defects in olivine
  15. Chemistry and Mineralogy of Earth’s Mantle
  16. SiC-dominated ultra-reduced mineral assemblage in carbonatitic xenoliths from the Dalihu basalt, Inner Mongolia, China
  17. Chemistry and Mineralogy of Earth’s Mantle
  18. Ab initio calculations of uranium and thorium storage in CaSiO3-perovskite in the Earth’s lower mantle
  19. Spinels renaissance: The past, present, and future of those ubiquitous minerals and materials
  20. Raman spectroscopy and the inversion degree of natural Cr-bearing spinels
  21. Spinels Renaissance: The Past, Present, and Future of Those Ubiquitous Minerals and Materials
  22. Chromium influence on Mg-Al intracrystalline exchange in spinels and geothermometric implications
  23. Adakite metasomatism in a back-arc mantle peridotite xenolith from the Sea of Japan
  24. Effects of fluorine content on the elastic behavior of topaz [Al2SiO4(F,OH)2]
  25. Equation of state and hyperfine parameters of high-spin bridgmanite in the Earth’s lower mantle by synchrotron X-ray diffraction and Mössbauer spectroscopy
  26. Calibration of Fe XANES for high-precision determination of Fe oxidation state in glasses: Comparison of new and existing results obtained at different synchrotron radiation sources
  27. Bacterially mediated morphogenesis of struvite and its implication for phosphorus recovery
  28. High-pressure high-temperature Raman spectroscopy of kerogen: Relevance to subducted organic carbon
  29. Determination of pressure in aqueo-carbonic fluid inclusions at high temperatures from measured Raman frequency shifts of CO2
  30. Melting, crystallization, and the glass transition: Toward a unified description for silicate phase transitions
  31. Revisiting the electron microprobe method of spinel-olivine-orthopyroxene oxybarometry applied to spinel peridotites
  32. Igneous or metamorphic? Hornblende phenocrysts as greenschist facies reaction cells in the Half Dome Granodiorite, California
  33. Nuclear-blast induced nanotextures in quartz and zircon within Trinitite
  34. Kegginite, Pb3Ca3[AsV12O40(VO)]·20H2O, a new mineral with a novel ε-isomer of the Keggin anion
  35. New Mineral Names
  36. New Mineral Names
  37. American Mineralogist thanks the year 2016 reviewers
Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2017-5816/html
Button zum nach oben scrollen