Home U-Pb LA-ICP-MS dating of apatite in mafic rocks: Evidence for a major magmatic event at the Devonian-Carboniferous boundary in the Armorican Massif (France)
Article
Licensed
Unlicensed Requires Authentication

U-Pb LA-ICP-MS dating of apatite in mafic rocks: Evidence for a major magmatic event at the Devonian-Carboniferous boundary in the Armorican Massif (France)

  • Anthony Pochon EMAIL logo , Marc Poujol , Eric Gloaguen , Yannick Branquet , Florence Cagnard , Charles Gumiaux and Denis Gapais
Published/Copyright: October 29, 2016
Become an author with De Gruyter Brill

Abstract

Apatite is a ubiquitous accessory mineral found in most magmatic rocks and is often the only U-bearing mineral available to date mafic rocks because primary zircon and/or baddeleyite are not present. In this paper, U-Pb LA-ICP-MS dating of apatite was applied to seven different dike and sill samples of dolerite from the Variscan belt of Brittany (Armorican Massif, western France). These dolerites, which are characterized by a within-plate tholeiite geochemical signature, are organized in several dense swarms across the belt. Their geochemical compositions are homogeneous although they intrude a large geographical area subdivided into several domains each characterized by different tectonic-metamorphic settings. Their emplacement ages were so far poorly constrained due to the difficulty to date these mafic rocks using either the 40Ar/39Ar or the U-Pb methods on classical minerals like mica, plagioclase, or zircon. Although the closure temperature of apatite is lower than the emplacement temperature of the magma, physical models show that the time needed to solidify and cool these mafic dikes and sills below the apatite closure temperature is basically of the order of 100 years or less. Consequently, the U-Pb dates obtained on apatite can be interpreted as the emplacement ages for these mafic intrusions. Our results demonstrate that, in all cases, the apatite grains do carry enough radiogenic Pb to be dated by in situ U-Pb analyses and yield a 207Pb-corrected mean age of 363.4 ± 5.8 Ma. These results reveal the existence of a major and short-lived magmatic event in the Variscan belt of Brittany during the Devonian-Carboniferous transition, a feature further highlighted by field evidence. Beyond the geological implications of these results, U-Pb LA-ICP-MS dating of apatite appears to represent an ideal tool to date small size mafic intrusions.


Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.


Acknowledgments

This work was supported by the French Geological Survey (BRGM), the region of Brittany, the OSUR, the CNRS-INSU and CESSUR program, and the Ulysses program (PHC). The authors thank the following groups and chief-geologists for allowing access to their granulate quarries: Y. Lemaitre and R. Le Droff from the “Pigeon Carrière” group, L. Seguin from the Eurovia group, the employees from the Hervé group, and the Nivet group. G. Wille (BRGM) is acknowledged for the microprobe analytical analyses. We particularly thank X. Le Coz and Y. Lepagnot from Géosciences Rennes laboratory for the thin sections and rock crushing preparations, respectively. We also address our thanks to the SARM (Nancy) for the whole-rock geochemistry. Constructive reviews by D. Chew, D. Harlov, and an anonymous reviewer have greatly improved the manuscript.

Reference cited

Aäfa, T., Lefort, J.-P., and Guennoc, P. (1999) Anisotropy of magnetic susceptibility investigations of the St Malo dyke swarm (Brittany, France): emplacement mechanism of doleritic intrusions. Geophysical Journal International, 139, 573–582.10.1046/j.1365-246x.1999.00975.xSearch in Google Scholar

Aldrich, L.T., Tilton, G.R., Davis, G.L., Nicolaysen, L.O., and Patterson, C.C. (1955) Comparison of U–Pb, Pb–Pb, and Rb–Sr ages of Precambrian minerals. In D.R. Derry, Ed., Symposium on Precambrian Correlation and Dating 7, p. 7–13. Geological Association of Canada Proceedings.Search in Google Scholar

Ballèvre, M., Bosse, V., Ducassou, C., and Pitra, P. (2009) Paleozoic history of the Armorican Massif: Models for the tectonic evolution of the suture zones. Comptes Rendus Geosciences, 341, 174–201..10.1016/j.crte.2008.11.009Search in Google Scholar

Ballèvre, M., Catalán, J.R.M., López-Carmona, A., Pitra, P., Abati, J., Fernández, R.D., Ducassou, C., Arenas, R., Bosse, V., Castiñeiras, P., and others (2014) Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: a joint French–Spanish project. Geological Society, London, Special Publications, 405, 77–113..10.1144/SP405.13Search in Google Scholar

Ballouard, C., Boulvais, P., Poujol, M., Gapais, D., Yamato, P., Tartèse, R., and Cuney, M. (2015) Tectonic record, magmatic history and hydrothermal alteration in the Hercynian Guérande leucogranite, Armorican Massif, France. Lithos, 220–223, 1–22.10.1016/j.lithos.2015.01.027Search in Google Scholar

Baumer, A., Caruba, R., Bizouard, H., and Peckett, A. (1983) Chlorapatite de synthese; substitution et inclusions de Mn, Ce, U et Th en traces. Canadian Mineralogist, 21, 567–573.Search in Google Scholar

Bosse, V., Féraud, G., Ballèvre, M., Peucat, J.-J., and Corsini, M. (2005) Rb–Sr and 40Ar/39Ar ages in blueschists from the Ile de Groix (Armorican Massif, France): Implications for closure mechanisms in isotopic systems. Chemical Geology, 220, 21–45.10.1016/j.chemgeo.2005.02.019Search in Google Scholar

Bosse, V., Bosse, G., Ruffet, G., Ballèvre, M., Peucat, J.-J., and De Jong, K. (2000) Late Devonian subduction and early-orogenic exhumation of eclogite-facies rocks from the Champtoceaux Complex (Variscan belt, France). Geological Journal, 35, 297–325.10.1002/gj.864Search in Google Scholar

Boudreau, A. (1995) Fluid evolution in layered intrusions: evidence from the chemistryof the halogen-bearing minerals. In J.F.H. Thompson, Ed., Magmas, Fluids and Ore Deposits, 23, pp. 25–46. Geological Society of Canada Short Course.Search in Google Scholar

Brun, J.-P., Guennoc, P., Truffert, C., and Vairon, J. (2001) Cadomian tectonics in northern Brittany: a contribution of 3-D crustal-scale modelling. Tectonophysics,331, 229–246.10.1016/S0040-1951(00)00244-4Search in Google Scholar

Capdevila, R. (2010) Les granites variques du Massif Armoricain. Bulletin de la Société géologique et minéralogique de Bretagne, (D) 7, 1–52.Search in Google Scholar

Carignan, J., Hild, P., Mevelle, G., Morel, J., and Yeghicheyan, D. (2001) Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: A study of GeochemicalReference Materials BR, DR-N, UB-N, AN-G and GH. Geostandards Newsletter, 25, 187–198.10.1111/j.1751-908X.2001.tb00595.xSearch in Google Scholar

Caroff, M., Le Gal, X., Rolet, J., Cotten, J., and Thonon, P. (1996) Magmatisme tholeiitique continental en contexte orogénique hercynien: l’exemple du volcanismeviséen de Kerroćh, Massif Armoricain (France). Comptes rendus de l’Académie des sciences de Paris, II, 322, 269–275..Search in Google Scholar

Carrapa, B., DeCelles, P.G., Reiners, P.W., Gehrels, G.E., and Sudo, M. (2009) Apatite triple dating and white mica 40Ar/39Ar thermochronology of syntectonic detritus in the Central Andes: A multiphase tectonothermal history. Geology, 37, 407–410.10.1130/G25698A.1Search in Google Scholar

Chamberlain, K.R., and Bowring, S.A. (2001) Apatite–feldspar U–Pb thermochronometer:a reliable, mid-range (~450°C), diffusion-controlled system. Chemical Geology, 172, 173–200.10.1016/S0009-2541(00)00242-4Search in Google Scholar

Chantraine, J., Autran, A., Cavelier, C., and others. (1996) Geological map of France, 1/1 000 000. BRGM, OrléansSearch in Google Scholar

Chauris, L., Houlgatte, E., Laforêt, C., and Picot, P. (1985) Un district antimono-aurifáre á gangue quartzo-carbonatáe: Le Semnon (Ille-et-Vilaine, Massif Armoricain, France). Hercynica, 1, 111–119..Search in Google Scholar

Cherniak, D.J., Lanford, W.A., and Ryerson, F.J. (1991) Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochimica et Cosmochimica Acta, 55, 1663–1673..10.1016/0016-7037(91)90137-TSearch in Google Scholar

Chew, D.M., Sylvester, P.J., and Tubrett, M.N. (2011) U–Pb and Th–Pb dating of apatite by LA-ICPMS. Chemical Geology, 280, 200–216.10.1016/j.chemgeo.2010.11.010Search in Google Scholar

Chew, D.M., Petrus, J.A., and Kamber, B.S. (2014) U–Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology, 363, 185–199.10.1016/j.chemgeo.2013.11.006Search in Google Scholar

Cochrane, R., Spikings, R.A., Chew, D., Wotzlaw, J.-F., Chiaradia, M., Tyrrell, S., Schaltegger, U., and Van der Lelij, R. (2014) High temperature (>350 °C) thermochronology and mechanisms of Pb loss in apatite. Geochimica et Cosmochimica Acta, 127, 39–56.10.1016/j.gca.2013.11.028Search in Google Scholar

Cuney, M., Stussi, J.-M., Brouand, M., Dautel, D., Michard, A., Gros, Y., Poncet, D., Bouton, P., Colchen, M., and Vervialle, J.-P. (1993) Géochimie et géochronologieU/Pb des diorites quartziques du Tallud et de Moncoutant: nouveaux arguments pour une extension de la “Ligne Tonalitique Limousineë en Vendée. Comptes Rendus de l’Académie des Sciences de Paris, II, 316, 1383–1390..Search in Google Scholar

Dodson, M.H. (1973) Closure temperature in cooling geochronological and petrologicalsystems. Contributions to Mineralogy and Petrology, 40, 259–274.10.1007/BF00373790Search in Google Scholar

Donnot, M., Guigues, J., Lulzac, Y., Magnien, A., Parfenoff, A., and Picot, P. (1973) Un nouveau type de gisement ďeuropium: la monazite grise à europium en nodulesdans les schistes paléozoïques de Bretagne. Mineralium Deposita, 8, 7–18.10.1007/BF00203346Search in Google Scholar

Faure, G., and Mensing, T.M. (2005) Isotopes: Principles and applications, xxvii+897p. Wiley, Hoboken, New JerseySearch in Google Scholar

Gapais, D., Brun, J.-P., Gumiaux, C., Cagnard, F., Ruffet, G., and Veslud, C.L.C.D. (2015) Extensional tectonics in the Hercynian Armorican belt (France). An overview. Bulletin de la Société Géologique de France, 186, 117–129..10.2113/gssgfbull.186.2-3.117Search in Google Scholar

Gloaguen, E., Branquet, Y., Boulvais, P., Moelo, Y., Chauvel, J.-J., Chiappero, P.-J., and Marcoux, E. (2007) Palaeozoic oolitic ironstone of the French Armorican Massif: a chemical and structural trap for orogenic base metal–As–Sb–Au mineralisation during Hercynian strike-slip deformation. Mineralium Deposita, 42, 399–422.10.1007/s00126-006-0120-4Search in Google Scholar

Goldoff, B., Webster, J.D., and Harlov, D.E. (2012) Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. American Mineralogist, 97, 1103–1115.10.2138/am.2012.3812Search in Google Scholar

Green, T.H., and Watson, E.B. (1982) Crystallization of apatite in natural magmas under high pressure, hydrous conditions, with particular reference to “Orogenic” rock series. Contributions to Mineralogy and Petrology, 79, 96–105.10.1007/BF00376966Search in Google Scholar

Gumiaux, C., Brun, J.P., and Gapais, D. (2004a) Strain removal within the HercynianShear Belt of Central Brittany (western France): methodology and tectonic implications. Geological Society, London, Special Publications, 224, 287–305.10.1144/GSL.SP.2004.224.01.18Search in Google Scholar

Gumiaux, C., Gapais, D., Brun, J.P., Chantraine, J., and Ruffet, G. (2004b) Tectonic history of the Hercynian Armorican Shear belt (Brittany, France). Geodinamica Acta, 17, 289–307.10.3166/ga.17.289-307Search in Google Scholar

Harrison, T.M., and Watson, E.B. (1984) The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 1467–1477.10.1016/0016-7037(84)90403-4Search in Google Scholar

Harrison, T.M., Catlos, E.J., and Montel, J.-M. (2002) U-Th-Pb dating of phosphate minerals. Reviews in Mineralogy and Geochemistry, 48, 524–558.10.2138/rmg.2002.48.14Search in Google Scholar

Houlgatte, E., Le Hérissé, A., Pelhate, A., and Rolet, J. (1988) Evolution géodynamiquedu bassin carbonifère de Laval (Massif Armoricain). Géologie de la France, no. 1, 27–46.Search in Google Scholar

Hughes, C.J. (1973) Spilites, keratophyres and the igneous spectrum. Geological Magazine, 503–527.10.1017/S0016756800042795Search in Google Scholar

Hughes, J.M., and Rakovan, J. (2002) The crystal structure of apatite, Ca5(PO4)3(F, OH, Cl). Reviews in Mineralogy and Geochemistry, 48, 1–12.10.1515/9781501509636-004Search in Google Scholar

Kelley, S. (2002) Excess argon in K–Ar and Ar–Ar geochronology. Chemical Geology, 188, 1–22.10.1016/S0009-2541(02)00064-5Search in Google Scholar

Lahaye, Y., Blais, S., Auvray, B., and Ruffet, G. (1995) Le Volcanisme fissural paleozoique du domaine nord-armoricain. Bulletin de la Societe Geologique de France, 166, 601–612.10.2113/gssgfbull.166.5.601Search in Google Scholar

Le Corre, C. (1969) Sur une paragenèse à chloritoïde dans les schistes de l’Ordovicien moyen des synclinaux du Sud de Rennes (Massif Armoricain). Bulletin de la Société Géologique Minéralogique de Bretagne, C, 33–44.Search in Google Scholar

Le Corre, C. (1975) Analyse comparee de la cristallinite des micas dans le Brioverien et le Paleozoique centre-armoricains; zoneographie et structure d’un domaine epizonal. Bulletin de la Societe Geologique de France, 7, XVII, 547–553.10.2113/gssgfbull.S7-XVII.4.547Search in Google Scholar

Le Gall, J. (1999) Les dolérites et basaltes tholéiitiques varisques du domaine nord-est armoricain. Géologie de la France, 4, 3–26.Search in Google Scholar

Le Gall, J., and Mary, G. (1983) Place et signification du complexe basique de Brée et des autres venues gabbroïques et doléritiques dans l’histoire cadomo-varisque de l’Est du Massif Armoricain. Bulletin de la Société géologique et minéralogique de Bretagne, C-15, 169–180.Search in Google Scholar

Li, C., Arndt, N.T., Tang, Q., and Ripley, E.M. (2015) Trace element indiscrimination diagrams. Lithos, 232, 76–8310.1016/j.lithos.2015.06.022Search in Google Scholar

Ludwig, K.R. (2012) User’s Manual for Isoplot 3.75. A geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center, 1–75.Search in Google Scholar

Mary, G., and Le Gall, J. (1985) Le Dinantien basal du flanc Nord du Bassin de Laval à Argentré: volcanites basiques et formations volcano-sédimentaires. Hercynica, 1, 155–163.Search in Google Scholar

Matte, P. (1986) La chaîne Varisque parmi les chaînes Paléozoïques péri atlantiques, modéle ďévolution et position des grands blocs continentaux au Permo-Carbonifère. Bulletin de la Société Géologique de France, 8, II, 9–24.10.2113/gssgfbull.II.1.9Search in Google Scholar

McConnell, D. (1938) A structural investigation of the isomorphism of the apatite group. American Mineralogist, 23, 1–19.Search in Google Scholar

McDowell, F.W., McIntosh, W.C., and Farley, K.A. (2005) A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard. Chemical Geology, 214, 249–263.10.1016/j.chemgeo.2004.10.002Search in Google Scholar

Oosthuyzen, E.J., and Burger, A.J. (1973) The suitability of apatite as an age indicator by the uranium-lead isotope method. Earth and Planetary Science Letters, 18, 29–36.10.1016/0012-821X(73)90030-7Search in Google Scholar

Paquette, J.-L., Piro, J.L., Devidal, J.L., Bosse, V., Didier, A., Sanac, S., and Abdelnour, Y. (2014) Sensitivity enhancement in LA-ICP-MS by N2 addition to carrier gas: Application to radiometric dating of U-Th-bearing minerals. Agilent ICP-MS Journal, 58, 4–5.Search in Google Scholar

Paton, C., Woodhead, J.D., Hellstrom, J.C., Hergt, J.M., Greig, A., and Maas, R. (2010) Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems, 11, Q0AA06.10.1029/2009GC002618Search in Google Scholar

Pearce, J.A. (1996) A user’s guide to basalt discrimination diagrams. In D.A. Wyman, Ed., Trace Element Geochemistry of Volcanic Rocks: Applications for massive sulphide exploration, 12, p. 79–113. Geological Association of Canada, Short Course Notes.Search in Google Scholar

Pelhate, A. (1994) Carboniferous of the Armorican Massif. In J. Chantraine, J. Rolet, D.S. Santallier, A. Piqué, and J.D. Keppie, Eds., Pre-Mesozoic Geology in France and Related Areas, p. 162–168. Springer.10.1007/978-3-642-84915-2_14Search in Google Scholar

Perroud, H., Auvray, B., Bonhommet, N., Mace, J., and Van Der Voo, R. (1986) Palaeomagnetism and K-Ar dating of lower carboniferous dolerite dykes from northern Brittany. Geophysical Journal of the Royal Astronomical Society, 87, 143–154.Search in Google Scholar

Peucat, J.-J., Auvray, B., Hirbec, Y., and Calvez, J.-Y. (1984) Granites et cisaillementshercyniens dans le Nord du Massif Armoricain; geochronologie Rb-Sr. Bulletin de la Societe Geologique de France, 7, XXVI, 1365–1373.10.2113/gssgfbull.S7-XXVI.6.1365Search in Google Scholar

Piccoli, P.M., and Candela, P.A. (2002) Apatite in igneous systems. Reviews in Mineralogy and Geochemistry, 48, 255–29210.1515/9781501509636-009Search in Google Scholar

Plaine, J. (1976) La bordure sud du synclinorium Paléozoïque de Laval (Massif armoricain): stratigraphie, volcanisme, structure. Université de Rennes, France.Search in Google Scholar

Pochon, A., Gapais, D., Gloaguen, E., Gumiaux, C., Branquet, Y., Cagnard, F., and Martelet, G. (2016) Antimony deposits in the Variscan Armorican belt, a link with mafic intrusives? Terra Nova, 28, 138–145.10.1111/ter.12201Search in Google Scholar

Reiners, P.W., Ehlers, T.A., and Zeitler, P.K. (2005) Past, present, and future of thermochronology. Reviews in Mineralogy and Geochemistry, 58, 1–18.10.1515/9781501509575-003Search in Google Scholar

Rolet, J., Gresselin, F., Jegouzo, P., Ledru, P., and Wyns, R. (1994) Intracontinental Hercynian Events in the Armorican Massif. In J. Chantraine, J. Rolet, D.S. Santallier, A. Piqué, and J.D. Keppie, Eds., Pre-Mesozoic Geology in France and Related Areas, pp. 195–219. Springer.10.1007/978-3-642-84915-2_20Search in Google Scholar

Ruffet, G., Perroud, H., and Féraud, G. (1992) Palaeomagnetism and40Ar/39Ar dating of the Trégor dolerites (Armorican Massif, France). Tectonophysics, 201, 121–140.10.1016/0040-1951(92)90179-ASearch in Google Scholar

Schoene, B., and Bowring, S.A. (2006) U–Pb systematics of the McClure Mountain syenite: Thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contributions to Mineralogy and Petrology, 151, 615–630.10.1007/s00410-006-0077-4Search in Google Scholar

Schoene, B., (2007) Determining accurate temperature–time paths from U–Pb thermochronology:An example from the Kaapvaal craton, southern Africa. Geochimica et Cosmochimica Acta, 71, 165–185.10.1016/j.gca.2006.08.029Search in Google Scholar

Spear, F.S., and Pyle, J.M. (2002) Apatite, monazite, and xenotime in metamorphic rocks. Reviews in Mineralogy and Geochemistry, 48, 293–335.10.1515/9781501509636-010Search in Google Scholar

Stacey, J.S., and Kramers, J.D. (1975) Approximation of terrestrial lead isotope evolutionby a two-stage model. Earth and Planetary Science Letters, 26, 207–221.10.1016/0012-821X(75)90088-6Search in Google Scholar

Storey, C.D., Smith, M.P., and Jeffries, T.E. (2007) In situ LA-ICP-MS U–Pb datingof metavolcanics of Norrbotten, Sweden: Records of extended geological histories in complex titanite grains. Chemical Geology, 240, 163–181.10.1016/j.chemgeo.2007.02.004Search in Google Scholar

Stormer, J.C., Pierson, M.L., and Tacker, R.C. (1993) Variation of F and Cl X‑ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. American Mineralogist, 78, 641–648.Search in Google Scholar

Sun, S.S., and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42, 313–345.10.1144/GSL.SP.1989.042.01.19Search in Google Scholar

Tartése, R., and Boulvais, P. (2010) Differentiation of peraluminous leucogranites “en route” to the surface. Lithos, 114, 353–368.10.1016/j.lithos.2009.09.011Search in Google Scholar

Tartése, R., Boulvais, P., Poujol, M., and Vigneresse, J.-L. (2011a) Granite petrogenesis revealed by combined gravimetric and radiometric imaging. Tectonophysics, 501, 98–103..10.1016/j.tecto.2011.02.003Search in Google Scholar

Tarétse, R., Poujol, M., Ruffet, G., Boulvais, P., Yamato, P., and KoŠler, J. (2011b) New U-Pb zircon and 40Ar/39Ar muscovite age constraints on the emplacement of the Lizio syn-tectonic granite (Armorican Massif, France). Comptes Rendus Geoscience, 343, 443–453.10.1016/j.crte.2011.07.005Search in Google Scholar

Thomson, S.N., Gehrels, G.E., Ruiz, J., and Buchwaldt, R. (2012) Routine low-damage apatite U-Pb dating using laser ablation–multicollector–ICPMS. Geochemistry, Geophysics, Geosystems, 13, Q0AA21.10.1029/2011GC003928Search in Google Scholar

Tilton, G.R., Patterson, C., Brown, H., Inghram, M., Hayden, R., Hess, D., and Larsen, E. (1955) Isotopic composition and distribution of lead, uranium, and thorium in a Precambrian Granite. Geological Society of America Bulletin, 66, 1131–1148.10.1130/0016-7606(1955)66[1131:ICADOL]2.0.CO;2Search in Google Scholar

Turcotte, D.L., and Schubert, G. (1982) Geodynamics: Applications of continuum physics to geological problems, 450 p. Wiley, New York.Search in Google Scholar

Velde, D. (1970) Les filons doleritiques du Nord de la Bretagne. Bulletin de la Societe Geologique de France, 7, XII, 843–855..10.2113/gssgfbull.S7-XII.5.843Search in Google Scholar

Vidal, P. (1980) LĹévolution polyorogénique du Massif armoricain; apport de la géochimie isotopique du strontium. Mémoires de la Société Géologique et Minéralogique de Bretagne, 21, 162 p.Search in Google Scholar

Watson, E.B. (1979) Apatite saturation in basic to intermediate magmas. GeophysicalResearch Letters, 6, 937–940.10.1029/GL006i012p00937Search in Google Scholar

Watson, E.B. (1980) Apatite and phosphorus in mantle source regions: An experimental study of apatite/melt equilibria at pressures to 25 kbar. Earth and Planetary Science Letters, 51, 322–335.10.1016/0012-821X(80)90214-9Search in Google Scholar

Webster, J.D., and Piccoli, P.M. (2015) Magmatic Apatite: A powerful, yet deceptive, mineral. Elements, 11, 177–182..10.2113/gselements.11.3.177Search in Google Scholar

Whitney, D.L., and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.10.2138/am.2010.3371Search in Google Scholar

Winchester, J.A., and Floyd, P.A. (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325–343.10.1016/0009-2541(77)90057-2Search in Google Scholar

Received: 2016-2-25
Accepted: 2016-6-27
Published Online: 2016-10-29
Published in Print: 2016-11-1

© 2016 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Highlights and Breakthroughs
  2. Melts, mush, and more: Evidence for the state of intermediate-to-silicic arc magmatic systems
  3. Investigating petrologic indicators of magmatic processes in volcanic rocks
  4. Nucleation rates of spherulites in natural rhyolitic lava
  5. Review
  6. Silicic magma reservoirs in the Earth’s crust
  7. Special Collection: New Advances in Subduction Zone Magma Genesis
  8. Petrogenesis of antecryst-bearing arc basalts from the Trans-Mexican Volcanic Belt: Insights into along-arc variations in magma-mush ponding depths, H2O contents, and surface heat flux
  9. Special Collection: Apatite: A Common Mineral, Uncommonly Versatile
  10. Wayneburnhamite, Pb9Ca6(Si2O7)3(SiO4)3, an apatite polysome: The Mn-free analog of ganomalite from Crestmore, California
  11. Special Collection: Apatite: A Common Mineral, Uncommonly Versatile
  12. U-Pb LA-ICP-MS dating of apatite in mafic rocks: Evidence for a major magmatic event at the Devonian-Carboniferous boundary in the Armorican Massif (France)
  13. Special Collection: Apatite: A Common Mineral, Uncommonly Versatile
  14. Quantification of CO2 concentration in apatite
  15. Special Collection: Apatite: a Common Mineral, Uncommonly Versatile
  16. Phosphate minerals in the H group of ordinary chondrites, and fluid activity recorded by apatite heterogeneity in the Zag H3-6 regolith breccia
  17. Special Collection: Apatite: A Common Mineral, Uncommonly Versatile
  18. In situ elemental and isotopic analysis of fluorapatite from the Taocun magnetite-apatite deposit, Eastern China: Constraints on fluid metasomatism
  19. Special Collection: Geology and Geobiology of Lassen Volcanic National Park
  20. Acido-thermotolerant fungi from Boiling Springs Lake, LVNP: Potential for lignocellulosic biofuels
  21. Research Article
  22. Solid solution along the synthetic LiAISi2O6-LiFeSi2O6 (spodumene-ferri-spodumene) join: A general picture of solid solutions, bond lengths, lattice strains, steric effects, symmetries, and chemical compositions of Li clinopyroxenes
  23. Research Article
  24. Formation of hydrous stishovite from coesite in high-pressure hydrothermal environments
  25. Research Article
  26. Raman characterization of synthetic magnesian calcites
  27. Research Article
  28. Yangite, PbMnSi3O8·H2O, a new mineral species with double wollastonite silicate chains, from the Kombat mine, Namibia
  29. Research Article
  30. Ideal wollastonite and the structural relationship between the pyroxenoids and pyroxenes
  31. Research Article
  32. Influence of the octahedral cationic-site occupancies on the framework vibrations of Li-free tourmalines, with implications for estimating temperature and oxygen fugacity in host rocks
  33. Research Article
  34. In situ X-ray observation of 10 Å phase stability at high pressure
  35. Research Article
  36. New mineral names
  37. Book Review
  38. Book Review: Pore-Scale Geochemical Processes, RIMG Volume 80
  39. Book Review
  40. Book Review: Highly Siderophile and Strongly Chalcophile Elements in High-Temperature Geochemistry and Cosmochemistry, RIMG Volume 81
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2016-5736/html
Scroll to top button