Home O-D…O bond geometry in OD-chondrodite
Article
Licensed
Unlicensed Requires Authentication

O-D…O bond geometry in OD-chondrodite

  • George A. Lager EMAIL logo , Peter Ulmer , Ronald Miletich and William G. Marshall
Published/Copyright: March 26, 2015
Become an author with De Gruyter Brill

Abstract

The crystal structure of OD-chondrodite [Mg5Si2O8(OD)2, P21/b (a unique), a = 4.74711(5), b = 10.34888(16), c = 7.90228(13) Å, α = 108.678(1)°] was refined to wRp = 0.0218, χ2 = 3.545 at ambient conditions using time-of-flight neutron powder data. The disordered H model proposed for OH-chondrodite on the basis of single-crystal X-ray data is confirmed. The occupations of the D1 and D2 sites are, respectively, 0.52(1) and 0.48(1). The long O5-D1 [1.076(4) Å] and O5-D2 [1.111(4) Å] bond lengths, which are two of the longest O-H(D) bonds observed in mineral structures, reflect the positional disorder of the O5 atom in the unshared OH-OH edge. Both D1 [1.968(4), 2.489(4) Å] and D2 [2.149(4), 2.251(4) Å] atoms are involved in two hydrogen bonds. A re-examination of the origin of positive OH frequency shifts in both F-bearing and OH-chondrodite at high pressure is warranted in view of the crystallographic data.

Received: 2000-3-7
Accepted: 2000-8-30
Published Online: 2015-3-26
Published in Print: 2001-1-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Self diffusion of Si and O in dacitic liquid at high pressures
  2. The effect of anhydrous composition on water solubility in granitic melts
  3. Stability and phase relations of Ca[ZnSi3]O8, a new phase with feldspar structure in the system CaO-ZnO-SiO2
  4. Magmatic Na-rich phlogopite in a suite of gabbroic crustal xenoliths from Volcán San Pedro, Chilean Andes: Evidence for a solvus relation between phlogopite and aspidolite
  5. The influence of T, aSiO₂, and fO₂ on exsolution textures in Fe-Mg olivine: An example from augite syenites of the Ilimaussaq Intrusion, South Greenland
  6. An experimental study of the external reduction of olivine single crystals
  7. Determination of site population in olivine: Warnings on X-ray data treatment and refinement
  8. Structural properties of ferromagnesian cordierites
  9. A calorimetric study of zoisite and clinozoisite solid solutions
  10. Mineralogy of lead in a soil developed on a Pb-mineralized sandstone (Largentière, France)
  11. Experimental mixtures of smectite and rectorite: Re-investigation of “fundamental particles” and “interparticle diffraction”
  12. Hydrothermal reactivity of Lu-saturated smectites: Part I. A long-range order study
  13. Hydrothermal reactivity of Lu-saturated smectites: Part II. A short-range order study
  14. Pulsed field gradient proton NMR study of the self-diffusion of H2O in montmorillonite gel: Effects of temperature and water fraction
  15. Structural environment and oxidation state of Mn in goethite-groutite solid-solutions
  16. Structure, compressibility, hydrogen bonding, and dehydration of the tetragonal Mn3+ hydrogarnet, henritermierite
  17. Electric field gradient tensors at the aluminum sites in the Al2SiO5 polymorphs from CCD high-resolution X-ray diffraction data: Comparison with 27Al NMR results
  18. Sodium cation dynamics in nitrate cancrinite: A low and high temperature 23Na and 1H MAS NMR study and high temperature Rietveld structure refinement
  19. O-D…O bond geometry in OD-chondrodite
  20. Refinement of hydrogen positions in synthetic hydroxyl-clinohumite by powder neutron diffraction
  21. In situ dehydration of yugawaralite
  22. Molecular dynamics simulation of phase transitions and melting in MgSiO3 with the perovskite structure—Comment
  23. Reply to Comment on “Molecular dynamics simulation of phase transitions and melting in MgSiO3 with the perovskite structure”
Downloaded on 4.11.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2001-0119/html
Scroll to top button