Home Structural environment and oxidation state of Mn in goethite-groutite solid-solutions
Article
Licensed
Unlicensed Requires Authentication

Structural environment and oxidation state of Mn in goethite-groutite solid-solutions

  • Andreas C. Scheinost EMAIL logo , Helge Stanjek , Darrell G. Schulze , Ubald Gasser and Donald L. Sparks
Published/Copyright: March 26, 2015
Become an author with De Gruyter Brill

Abstract

Both X-ray absorption and diffraction techniques were used to study the structural environment and oxidation state of Mn in goethite-groutite solid solutions, α-MnxFe1-xOOH, with xMn ≤ 0.47. Rietveld refinement of X-ray diffraction (XRD) data was employed to investigate the statistical long-range structure. The results suggest that increasing xMn leads to a gradual elongation of Fe and Mn occupied octahedra which, in turn, causes a gradual increase of the lattice parameter a and a gradual decrease of b and c in line with Vegard’s law. X-ray absorption fine structure (XAFS) spectra at the MnKα and FeKα edges revealed, however, that the local structure around Fe remains goethite-like for xMn ≤ 0.47, while the local structure around Mn is goethite-like for xMn ≤ 0.13, but groutite-like for higher xMn. The spectral observations were confirmed by XAFS-derived metal distances showing smaller changes around Fe and larger changes around Mn as compared with those determined by XRD. Therefore, the XAFS results indicate formation of groutite-like clusters in the goethite host structure for xMn > 0.13, which remain undetected by XRD. The first prominent resonance peak in the X-ray absorption near-edge spectra (XANES) of the Mn goethites was 17.2 to 17.8 eV above the Fermi level of Mn (6539 eV), in line with that of Mn3+ reference compounds, and well separated from that of Mn2+ and Mn4+ compounds. Therefore, Mn in goethite is dominantly trivalent regardless of whether the samples were derived from Mn2+ or Mn3+ solutions. This may indicate a catalytic oxidation of Mn2+ during goethite crystal growth similar to that found at the surface of Mn oxides.

Received: 1999-11-16
Accepted: 2000-8-10
Published Online: 2015-3-26
Published in Print: 2001-1-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Self diffusion of Si and O in dacitic liquid at high pressures
  2. The effect of anhydrous composition on water solubility in granitic melts
  3. Stability and phase relations of Ca[ZnSi3]O8, a new phase with feldspar structure in the system CaO-ZnO-SiO2
  4. Magmatic Na-rich phlogopite in a suite of gabbroic crustal xenoliths from Volcán San Pedro, Chilean Andes: Evidence for a solvus relation between phlogopite and aspidolite
  5. The influence of T, aSiO₂, and fO₂ on exsolution textures in Fe-Mg olivine: An example from augite syenites of the Ilimaussaq Intrusion, South Greenland
  6. An experimental study of the external reduction of olivine single crystals
  7. Determination of site population in olivine: Warnings on X-ray data treatment and refinement
  8. Structural properties of ferromagnesian cordierites
  9. A calorimetric study of zoisite and clinozoisite solid solutions
  10. Mineralogy of lead in a soil developed on a Pb-mineralized sandstone (Largentière, France)
  11. Experimental mixtures of smectite and rectorite: Re-investigation of “fundamental particles” and “interparticle diffraction”
  12. Hydrothermal reactivity of Lu-saturated smectites: Part I. A long-range order study
  13. Hydrothermal reactivity of Lu-saturated smectites: Part II. A short-range order study
  14. Pulsed field gradient proton NMR study of the self-diffusion of H2O in montmorillonite gel: Effects of temperature and water fraction
  15. Structural environment and oxidation state of Mn in goethite-groutite solid-solutions
  16. Structure, compressibility, hydrogen bonding, and dehydration of the tetragonal Mn3+ hydrogarnet, henritermierite
  17. Electric field gradient tensors at the aluminum sites in the Al2SiO5 polymorphs from CCD high-resolution X-ray diffraction data: Comparison with 27Al NMR results
  18. Sodium cation dynamics in nitrate cancrinite: A low and high temperature 23Na and 1H MAS NMR study and high temperature Rietveld structure refinement
  19. O-D…O bond geometry in OD-chondrodite
  20. Refinement of hydrogen positions in synthetic hydroxyl-clinohumite by powder neutron diffraction
  21. In situ dehydration of yugawaralite
  22. Molecular dynamics simulation of phase transitions and melting in MgSiO3 with the perovskite structure—Comment
  23. Reply to Comment on “Molecular dynamics simulation of phase transitions and melting in MgSiO3 with the perovskite structure”
Downloaded on 4.11.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2001-0115/html
Scroll to top button