The tremolite-actinolite-ferro–actinolite series: Systematic relationships among cell parameters, composition, optical properties, and habit, and evidence of discontinuities
Abstract
Unit-cell parameters, optical properties, and chemical compositions have been measured for 103 samples in the tremolite-actinolite-ferro-actinolite series. The average values of the non-essential constituents are: TAl = 0.10(11), CAl = 0.06(6), B(Fe, Mn, Mg) = 0.09(7), BNa = 0.04(5), ANa = 0.09(9), and Cr, Ti, and K ≅ 0. Asbestiform actinolite samples have lower Al contents than massive or “byssolitic” actinolite samples. Unit-cell parameters for end members tremolite and ferro-actinolite based on regressions of the data are: a = 9.841 ± 0.003 Å, 10.021 ± 0.011 Å; b = 18.055 ± 0.004 Å, 18.353 ± 0.018 Å; c = 5.278 ± 0.001 Å, 5.315 ± 0.003 Å; and cell volume = 906.6 ± 0.5 Å3, 944 ± 2 Å3. The changes in a, b, and cell volume with ferro-actinolite substitution are modeled with quadratic functions, and the change in c with ferro-actinolite substitution is modeled with a linear function. There is a positive correlation between c and Al that results in a discrimination between asbestiform and massive or “byssolitic” habits for c and for the refractive indices. The principal refractive indices nγ and nβ are linear with respect to ferro-actinolite substitution, but nα is best modeled by two lines with a change in slope between 26 and 32% ferro-actinolite. Birefringence and extinction angle also change between 26 and 32% ferro-actinolite. The predicted end-member values of the principal refractive indices for tremolite and ferro-actinolite are: nα = 1.602 ± 0.001, 1.661 ± 0.005; nβ = 1.621 ± 0.001, 1.692 ± 0.004; and nγ = 1.631 ± 0.001, 1.700 ± 0.003. There is a discontinuity in a at approximately 11% ferro-actinolite that is accompanied by a drop in Ca. There are also indications of discontinuities in optical properties and c between 26 and 32% ferro-actinolite that may be due to an increase in tschermakite substitution. Both discontinuities are accompanied by a decrease in the relative frequency of natural samples.
© 2015 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Measurement of crystal size distributions
- Pressure dependence of the solubility of Ar and Kr in melts of the system SiO2-NaAlSi2O6
- Solubility behavior of water in haploandesitic melts at high pressure and high temperature
- Proton-containing defects at forsterite {010} tilt grain boundaries and stepped surfaces
- Incorporation of Fe3+ into forsterite and wadsleyite
- Molecular dynamics simulation of Al/Si-ordered plagioclase feldspar
- Cation ordering and structural variations with temperature in MgAl2O4 spinel: An X-ray single-crystal study
- Aluminium coordination in tektites: A XANES study
- Crystal structure of Cr-mullite
- Structure of synthetic 2-line ferrihydrite by electron nanodiffraction
- Transmission electron microscopy study of gaudefroyite, Ca8Mn6 3+[(BO3)6(CO3)2O6]
- Nano- to micro-scale decompression products in ultrahigh-pressure phengite: HRTEM and AEM study, and some petrological implications
- New insights into the mechanism for chloritization of biotite using polytype analysis
- The dissolution of hectorite: In-situ, real-time observations using atomic force microscopy
- Quantification of minor phases in growth kinetics experiments with powder X-ray diffraction
- Illite-smectite structural changes during metamorphism in black Cambrian Alum shales from the Baltic area
- The tremolite-actinolite-ferro–actinolite series: Systematic relationships among cell parameters, composition, optical properties, and habit, and evidence of discontinuities
- Cordierite I: The coordination of Fe2+
- Cordierite II: The role of CO2 and H2O
- Crystal chemical variations in Li- and Fe-rich micas from Pikes Peak batholith (central Colorado)
- The crystal structure of TlAlSiO4: The role of inert pairs in exclusion of Tl from silicate minerals
- The structure of agrinierite: a Sr-containing uranyl oxide hydrate mineral
- The crystal structure of namibite, Cu(BiO)2VO4(OH), and revision of its symmetry
- The crystal structure of pararobertsite and its relationship to mitridatite
- Description and crystal structure of cabalzarite Ca(Mg,Al,Fe)2(AsO4)2(H2O,OH)2, a new mineral of the tsumcorite group
- Tegengrenite, a new, rhombohedral spinel-related Sb mineral from the Jakobsberg Fe-Mn deposit, Värmland, Sweden
Articles in the same Issue
- Measurement of crystal size distributions
- Pressure dependence of the solubility of Ar and Kr in melts of the system SiO2-NaAlSi2O6
- Solubility behavior of water in haploandesitic melts at high pressure and high temperature
- Proton-containing defects at forsterite {010} tilt grain boundaries and stepped surfaces
- Incorporation of Fe3+ into forsterite and wadsleyite
- Molecular dynamics simulation of Al/Si-ordered plagioclase feldspar
- Cation ordering and structural variations with temperature in MgAl2O4 spinel: An X-ray single-crystal study
- Aluminium coordination in tektites: A XANES study
- Crystal structure of Cr-mullite
- Structure of synthetic 2-line ferrihydrite by electron nanodiffraction
- Transmission electron microscopy study of gaudefroyite, Ca8Mn6 3+[(BO3)6(CO3)2O6]
- Nano- to micro-scale decompression products in ultrahigh-pressure phengite: HRTEM and AEM study, and some petrological implications
- New insights into the mechanism for chloritization of biotite using polytype analysis
- The dissolution of hectorite: In-situ, real-time observations using atomic force microscopy
- Quantification of minor phases in growth kinetics experiments with powder X-ray diffraction
- Illite-smectite structural changes during metamorphism in black Cambrian Alum shales from the Baltic area
- The tremolite-actinolite-ferro–actinolite series: Systematic relationships among cell parameters, composition, optical properties, and habit, and evidence of discontinuities
- Cordierite I: The coordination of Fe2+
- Cordierite II: The role of CO2 and H2O
- Crystal chemical variations in Li- and Fe-rich micas from Pikes Peak batholith (central Colorado)
- The crystal structure of TlAlSiO4: The role of inert pairs in exclusion of Tl from silicate minerals
- The structure of agrinierite: a Sr-containing uranyl oxide hydrate mineral
- The crystal structure of namibite, Cu(BiO)2VO4(OH), and revision of its symmetry
- The crystal structure of pararobertsite and its relationship to mitridatite
- Description and crystal structure of cabalzarite Ca(Mg,Al,Fe)2(AsO4)2(H2O,OH)2, a new mineral of the tsumcorite group
- Tegengrenite, a new, rhombohedral spinel-related Sb mineral from the Jakobsberg Fe-Mn deposit, Värmland, Sweden