Home Cordierite I: The coordination of Fe2+
Article
Licensed
Unlicensed Requires Authentication

Cordierite I: The coordination of Fe2+

  • Charles A. Geiger EMAIL logo , Thomas Armbruster , Vladimir Khomenko and Simona Quartieri
Published/Copyright: March 25, 2015
Become an author with De Gruyter Brill

Abstract

The incorporation of Fe2+ was investigated in four natural cordierite samples. 57Fe Mössbauer, single-crystal UV-VIS optical absorption, and X-ray absorption spectroscopies, as well as X-ray single-crystal diffraction were used. Mössbauer, optical, and XAS spectroscopy show that Fe2+ is incorporated on two different structural sites in two Mg-rich samples. Mössbauer measurements give the best quantitative measure of the amounts of Fe2+, but the optical spectra are the most sensitive for determinations at low concentrations and at high-bulk Fe2+ concentrations in cordierite. The spectroscopic data are most consistent with small amounts of Fe2+ (i.e., 0.02 of Fe2+ per formula unit) being located on a tetrahedral site rather than in the center (or off center) of the six-membered tetrahedral rings or in channel cavities. X-ray single-crystal refinements on two Mg-rich cordierites show a very small excess electron density on T11 and not in the channels. A third refinement on a slightly more iron-rich sample shows, in contrast, no excess electron density on T11. We interpret these data as indicating that small amounts of Fe2+ (0.01 to 0.02 atoms per formula unit) replace tetrahedral Al11 in cordierite, where charge balance is achieved by placing Na in the center of the six-membered rings. This substitution is consistent with the known chemistry of natural cordierites and with simple structural energetics. The identification and assignment of small amounts of Fe2+ on T11 requires spectroscopic determination or careful X-ray single-crystal refinements and cannot be achieved from composition data and structural formula calculations.

Received: 1999-6-28
Accepted: 2000-4-13
Published Online: 2015-3-25
Published in Print: 2000-8-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Measurement of crystal size distributions
  2. Pressure dependence of the solubility of Ar and Kr in melts of the system SiO2-NaAlSi2O6
  3. Solubility behavior of water in haploandesitic melts at high pressure and high temperature
  4. Proton-containing defects at forsterite {010} tilt grain boundaries and stepped surfaces
  5. Incorporation of Fe3+ into forsterite and wadsleyite
  6. Molecular dynamics simulation of Al/Si-ordered plagioclase feldspar
  7. Cation ordering and structural variations with temperature in MgAl2O4 spinel: An X-ray single-crystal study
  8. Aluminium coordination in tektites: A XANES study
  9. Crystal structure of Cr-mullite
  10. Structure of synthetic 2-line ferrihydrite by electron nanodiffraction
  11. Transmission electron microscopy study of gaudefroyite, Ca8Mn6 3+[(BO3)6(CO3)2O6]
  12. Nano- to micro-scale decompression products in ultrahigh-pressure phengite: HRTEM and AEM study, and some petrological implications
  13. New insights into the mechanism for chloritization of biotite using polytype analysis
  14. The dissolution of hectorite: In-situ, real-time observations using atomic force microscopy
  15. Quantification of minor phases in growth kinetics experiments with powder X-ray diffraction
  16. Illite-smectite structural changes during metamorphism in black Cambrian Alum shales from the Baltic area
  17. The tremolite-actinolite-ferro–actinolite series: Systematic relationships among cell parameters, composition, optical properties, and habit, and evidence of discontinuities
  18. Cordierite I: The coordination of Fe2+
  19. Cordierite II: The role of CO2 and H2O
  20. Crystal chemical variations in Li- and Fe-rich micas from Pikes Peak batholith (central Colorado)
  21. The crystal structure of TlAlSiO4: The role of inert pairs in exclusion of Tl from silicate minerals
  22. The structure of agrinierite: a Sr-containing uranyl oxide hydrate mineral
  23. The crystal structure of namibite, Cu(BiO)2VO4(OH), and revision of its symmetry
  24. The crystal structure of pararobertsite and its relationship to mitridatite
  25. Description and crystal structure of cabalzarite Ca(Mg,Al,Fe)2(AsO4)2(H2O,OH)2, a new mineral of the tsumcorite group
  26. Tegengrenite, a new, rhombohedral spinel-related Sb mineral from the Jakobsberg Fe-Mn deposit, Värmland, Sweden
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2000-8-918/html
Scroll to top button