Startseite A Two-factor Model of Intra-industry Trade: A Demonstration of Robustness of Krugman’s (1980) Model
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Two-factor Model of Intra-industry Trade: A Demonstration of Robustness of Krugman’s (1980) Model

  • Lianjie Duan EMAIL logo
Veröffentlicht/Copyright: 4. Dezember 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Using Cobb-Douglas production function with increasing returns to scale, this paper presents an intra-industry trade model which contains two factors, capital and labor. Thus, this paper extends Krugman’s (1980) single-factor model to a two-factor model with the entry cost. Firstly, an equilibrium analysis of closed economy is carried out. After the condition of existence and uniqueness of equilibrium is obtained, the analytic solutions are given. Secondly, it provides an analysis on trade effects. The results show that, under setup of symmetry among firms, the intra-industry trade can only enable consumers to benefit from product diversification without making firms achieve economies of scale. Obviously, this conclusion is consistent with Krugman (1980), which thus indicates robustness of Krugman’s (1980) model.


Supported by National Natural Science Foundation of China (71873150)


References

[1] Krugman P R. Increasing returns, monopolistic competition, and international trade. Journal of International Economics, 1979, 9(4): 469–479.10.1016/0022-1996(79)90017-5Suche in Google Scholar

[2] Krugman P R. Scale economies, product differentiation, and the pattern of trade. The American Economic Review, 1980, 70(5): 950–959.10.7551/mitpress/5933.003.0005Suche in Google Scholar

[3] Head K, Ries J. Rationalization effects of tariff reductions. Journal of International Economics, 1999, 47(2): 295–320.10.1016/S0022-1996(98)00019-1Suche in Google Scholar

[4] Tybout J, Westbrook D. Trade liberalization and the dimensions of efficiency change in Mexican manufacturing industries. Journal of International Economics, 1995, 39: 53–78.10.1016/0022-1996(94)01363-WSuche in Google Scholar

[5] Melitz M J. The impact of trade on intra-industry reallocations and aggregate industry productivity. Econometrica, 2003, 71(6): 1695–1725.10.1111/1468-0262.00467Suche in Google Scholar

[6] Bernard A B, Redding S J, Schott P K. Comparative advantage and heterogeneous firms. The Review of Economic Studies, 2007, 74(1): 31–66.10.1111/j.1467-937X.2007.00413.xSuche in Google Scholar

[7] Melitz M J, Ottaviano G P. Market size, trade, and productivity. Review of Economic Studies, 2008, 75(1): 295–316.10.1111/j.1467-937X.2007.00463.xSuche in Google Scholar

[8] Anderson F J. Trade, firm size, and product variety under monopolistic competition. The Canadian Journal of Economics, 1991, 24(1): 12–20.10.2307/135476Suche in Google Scholar

[9] Bertoletti P, Etro F. Monopolistic Competition: A Dual Approach. Working Paper, 2013.10.2139/ssrn.2272625Suche in Google Scholar

Appendix A

Differentiating Equation (12) with respect to k yields

πk=λ1u(x/L)1LAαkα1lβAkαlβ+λ1u(x/L)Aαkα1lβr=λ1u(x/L)λ1u(x/L)1LAαkα1lβAkαlβλ1u(x/L)+Aαkα1lβr=pu(x/L)xLAαkα1lβAkαlβu(x/L)x+Aαkα1lβr=p1eAαkα1lβ+Aαkα1lβr=p11eAαkα1lβr.

So, according to πk=0, we can obtain

p11eAαkα1lβ=r.

Similarly, Differentiating Equation (12) with respect to l yields

πl=λ1u(x/L)1LAβkαlβ1Akαlβ+λ1u(x/L)Aβkαlβ1w=λ1u(x/L)λ1u(x/L)1LAβkαlβ1Akαlβλ1u(x/L)+Aβkαlβ1w=pu(x/L)xLAβkαlβ1Akαlβu(x/L)x+Aβkαlβ1w=p1eAβkαlβ1+Aβkαlβ1w=p11eAβkαlβ1w.

So, according to πl=0, we can obtain

p11eAβkαlβ1=w.

Appendix B

r(11/e)Aα(αw/βr)α1lα+β1xfswlr(αw/βr)l=0,r(11/e)Aα(αw/βr)α1lα+β1A(αw/βr)αlαlβfswlr(αw/βr)l=0,r(11/e)Aα(αw/βr)α1lα+β1A(αw/βr)αlα+βfswlr(αw/βr)l=0,r(αw/βr)l(11/e)αfswlr(αw/βr)l=0,σ=11ρ1ρ=1σ11σ=ρ.

For e = σ, ρ = 1 – 1e. So, we obtain

r(αw/βr)lραfswlr(αw/βr)l=0,wlβρfswlαβwl=0,lw1βρ1αβ=fs,lw1βραρβρ=fs,lw1(α+β)ρβρ=fs.

Appendix C

p=rρAα(αw/βr)α1[fsβρ/w(1(α+β)ρ)]α+β1=ρAαrαwβrα1fsβw(1(α+β)ρ)α+β1ρα+β11=ρAαrαwβrα1βwα+β1fs(1(α+β)ρ)α+β1ρα+β11=ρAαrαrα1βw1αβwα+β1fs(1(α+β)ρ)α+β1ρα+β11=Aρα+βαrαβwβfs(1(α+β)ρ)α+β11.

Appendix D

Using Equation (3), we can obtain

L=0m(l+ls)di.

Thus,

L=m(l+ls).

In addition,

m=Ll+ls.

Substituting Equation (18) into the above expression and rearranging terms yields

m=Lfsβρw(1(α+β)ρ)+ls.

Appendix E

pi=λ1u(ci)=λ1ρciρ1,λ=ρcρ1p.

Substituting Equations (21) and (22) into the above expression yields

λ=ρALαrαβwβfsρ1(α+β)ρα+βρ1Aρα+βαrαβwβfs1(α+β)ρα+β11=ρALαrαβwβfsρ1(α+β)ρα+βρ1Aρα+βαrαβwβfs1(α+β)ρα+β1=ρALαrαβwβfs1(α+β)ρα+βρα+βρ1Aρα+βαrαβwβfs1(α+β)ρα+β1=ρρ(α+β)(ρ1)ρα+βAρ1AL1ραrα(ρ1)αrαβwβ(ρ1)βwβfs1(α+β)ρ(α+β)(ρ1)fs1(α+β)ρα+β1=ρ(α+β)ρ+1AρL1ραrαρβwβρfs1(α+β)ρ(α+β)ρ1=ρ(α+β)ρ+1L1ρAαrαβwβρfs1(α+β)ρ(α+β)ρ1.
Received: 2018-12-03
Accepted: 2019-03-29
Published Online: 2019-12-04
Published in Print: 2019-12-18

© 2019 Walter De Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.21078/JSSI-2019-422-15/html
Button zum nach oben scrollen