Home Real-Time Pricing of Smart Grid Based on Piece-Wise Linear Functions
Article
Licensed
Unlicensed Requires Authentication

Real-Time Pricing of Smart Grid Based on Piece-Wise Linear Functions

  • Zhihong Xu , Liangyu Guo , Yan Gao EMAIL logo , Muhammad Hussain and Panhong Cheng
Published/Copyright: September 18, 2019
Become an author with De Gruyter Brill

Abstract

In a power grid system, utility is a measure of the satisfaction of users’ electricity consumption; cost is a monetary value of electricity generated by the supplier. The utility and cost functions represent the satisfaction of different users and the supplier. Quadratic utility, logarithmic utility, and quadratic cost functions are widely used in social welfare maximization models of real-time pricing. These functions are not universal; they have to be discussed in detail for individual models. To overcome this problem, a piece-wise linear utility function and a piece-wise linear cost function with general properties are proposed in this paper. By smoothing the piece-wise linear utility and cost functions, a social welfare maximization model can be transformed into a differentiable convex optimization problem. A dual optimization method is used to solve the smoothed model. Through mathematical deduction and numerical simulations, the rationality of the model and the validity of the algorithm are verified as long as the elastic and cost coefficients take appropriate values. Thus, different user types and the supplier can be determined by selecting different elastic and cost coefficients.


Supported by the Natural Science Foundation of China (11171221)


Acknowledgements

The authors gratefully acknowledge the editor and two anonymous referees for their insightful comments and helpful suggestions that led to a marked improvement of the article.

References

[1] Park L, Jang Y, Cho S, et al. Residential demand response for renewable energy resources in smart grid systems. IEEE Transactions on Industrial Informatics, 2017, 13(6): 3165–3173.10.1109/TII.2017.2704282Search in Google Scholar

[2] Yang X, Zhou M, Li G. Survey on demand response mechanism and modeling in smart grid. Power System Technology, 2016, 40(1): 220–226 (in Chinese).Search in Google Scholar

[3] Samadi P, Mohsenian-Rad A H, Schober R, et al. Optimal real-time pricing algorithm based on utility maximization for smart grid. IEEE International Conference on Smart Grid Communications, 2010: 415–420.10.1109/SMARTGRID.2010.5622077Search in Google Scholar

[4] Dai Y, Gao Y. Real-time pricing decision based on leader-follower game in smart grid. Journal of Systems Science and Information, 2015, 3(4): 348–356.10.1515/JSSI-2015-0348Search in Google Scholar

[5] Maharjan S, Zhu Q, Zhang Y, et al. Demand response management in the smart grid in a large population regime. IEEE Transactions on Smart Grid, 2016, 7(1): 189–199.10.1109/TSG.2015.2431324Search in Google Scholar

[6] Wang H, Gao Y. Distributed real-time pricing method incorporating load uncertainty based on nonsmooth equations for smart grid. Mathematical Problems in Engineering, 2019. https://doi.org/10.1155/2019/1498134.10.1155/2019/1498134Search in Google Scholar

[7] Tao L, Gao Y. Real-time pricing for smart grid with multiple companies and multiple users using two-stage optimization. Journal of Systems Science and Information, 2018, 6(5): 435–446.10.21078/JSSI-2018-435-12Search in Google Scholar

[8] Asadi G, Gitizadeh M, Roosta A. Optimal real-time pricing algorithm based on utility maximization for smart grid. Iranian Conference on Electrical Engineering, 2013: 1–7.Search in Google Scholar

[9] Zhang W, Chen G, Dong Z, et al. An efficient algorithm for optimal real-time pricing strategy in smart grid. IEEE PES General Meeting Conference & Exposition, 2014: 1–5.10.1109/PESGM.2014.6939401Search in Google Scholar

[10] Zhu H, Gao Y, Hou Y, et al. Multi-time slots real-time pricing strategy with power fluctuation caused by operating continuity of smart home appliances. Engineering Applications of Artificial Intelligence, 2018, 71(2018): 166–174.10.1016/j.engappai.2018.02.010Search in Google Scholar

[11] Song X, Qu J. An improved real-time pricing algorithm based on utility maximization for smart grid. World Congress on Intelligent Control and Automation, 2014: 2509–2513.Search in Google Scholar

[12] Feng Z. Real-time pricing method research based on improved dual decomposition for smart grid. Hangzhou: Zhejiang Sci-Tech University, 2012 (in Chinese).Search in Google Scholar

[13] Murphy L, Kaye R J, Wu F F. Distributed spot pricing in radial distribution systems. IEEE Transactions on Power Systems, 1994, 9(1): 311–317.10.1109/59.317596Search in Google Scholar

[14] Yusta J M, Khodr H M, Urdaneta A J. Optimal pricing of default customers in electrical distribution systems: Effect behavior performance of demand response models. Electric Power Systems Research, 2007, 77(5–6): 548–558.10.1016/j.epsr.2006.05.001Search in Google Scholar

[15] Aalami H A, Parsa Moghaddam M, Yousefi G R. Evaluation of nonlinear models for time-based rates demand response programs. International Journal of Electrical Power & Energy Systems, 2015, 65: 282–290.10.1016/j.ijepes.2014.10.021Search in Google Scholar

[16] Samimi A, Nikzad M, Mohammadi M. Real-time electricity pricing of a comprehensive demand response model in smart grids. International Transactions on Electrical Energy Systems, 2017, 27(3): 1–15.10.1002/etep.2256Search in Google Scholar

[17] Xu Z, Gao Y, Zhu H, Tao L. Real-time pricing strategy for smart grid with the piecewise linear utility function. Industrial Engineering and Management, 2018, 23(5): 44–52 (in Chinese).Search in Google Scholar

[18] Ahmed K T, Hasan M N, Hossain M F, et al. Demand management using utility based real time pricing for smart grid with a new cost function. International Telecommunication Networks and Applications Conference, 2017: 1–6.10.1109/ATNAC.2017.8215414Search in Google Scholar

[19] Shi Z, Liang H, Huang S, et al. Distributionally robust chance-constrained energy management for islanded microgrids. IEEE Transactions on Smart Grid, 2018, 10(2): 2234–2244.10.1109/PESGM40551.2019.8973753Search in Google Scholar

[20] Khalid M, Akram U, Shafiq S. Optimal planning of multiple distributed generating units and storage in active distribution networks. IEEE Access, 2018, 6: 55234–55244.10.1109/ACCESS.2018.2872788Search in Google Scholar

[21] Meena N K, Swarnkar A, Gupta N, et al. Dispatchable solar photovoltaic power generation planning for distribution systems. IEEE International Conference on Industrial & Information Systems, 2017: 1–6.10.1109/ICIINFS.2017.8300337Search in Google Scholar

[22] Mokryani G, Siano P, Piccolo A. Social welfare maximization for optimal allocation of wind turbines in distribution systems. International Conference on Electrical Power Quality and Utilisation, 2012: 158–163.10.1109/EPQU.2011.6128926Search in Google Scholar

[23] Gao Y. Nonsmooth optimization. Beijing: Science Press, 2018 (in Chinese).Search in Google Scholar

[24] Wu H, Zhang P, Lin G H. Smoothing approximations for some piecewise smooth functions. Journal of the Operations Research Society of China, 2015, 3(3): 317–329.10.1007/s40305-015-0091-1Search in Google Scholar

[25] Chen B. Optimization theory and algorithm. 2nd Edition. Tsinghua University Press, 2005 (in Chinese).Search in Google Scholar

Appendix 1

The error analysis between the smooth function and the piece-wise linear utility function is as follows:

  1. When 0 < xa1,

    |U^ε1(x)U(x)|=|U^ε1(x)U1(x)|=(ω1+ω2)x+(ω1ω2)a12+(xa1)2(ω2ω1)2(xa1)2+ε12ω1x=(xa1)2+ε12+(xa1)2(xa1)2+ε12(xa1)(ω2ω1)=12(xa1)(ω2ω1)ε(xa1)2+ε12(xa1)2+ε12+a1x12(xa1)(ω2ω1)ε(xa1)2+ε12(xa1)2+ε12=12(xa1)(ω2ω1)ε(xa1)2+ε12(xa1)(ω2ω1)ε(xa1)2=12(ω2ω1)εxa1.
  2. When a1 < xa2,

    |U^ε2(x)U(x)|=|U^ε2(x)U2(x)|=(ω2+ω3)x+2(ω1ω2)a1+(ω2ω3)a22+(xa2)2(ω3ω2)2(xa2)2+ε12ω2x(ω1ω2)a1=(xa2)2+ε12+(xa2)2(xa2)2+ε12(xa2)(ω3ω2)=12(xa2)(ω3ω2)ε(xa2)2+ε12(xa2)2+ε12+a2x12(xa2)(ω3ω2)ε(xa2)2+ε12(xa2)2+ε12=12(xa2)(ω3ω2)ε(xa2)2+ε12(xa2)(ω3ω2)ε(xa2)2=12(ω3ω2)εxa2.
  3. When a2 < xa3,

    |U^ε3(x)U(x)|=|U^ε3(x)U3(x)|=|(ω3+ω4)x+2(ω1ω2)a1+2(ω2ω3)a2+(ω3ω4)a32+(xa3)2(ω4ω3)2(xa3)2+ε12ω3x(ω1ω2)a1(ω2ω3)a2|=(xa3)2+ε12+(xa3)2(xa3)2+ε12(xa3)(ω4ω3)=12(xa3)(ω4ω3)ε(xa3)2+ε12(xa3)2+ε12+a3x12(xa3)(ω4ω3)ε(xa3)2+ε12(xa3)2+ε12=12(xa3)(ω4ω3)ε(xa3)2+ε12(xa3)(ω4ω3)ε(xa3)2=12(ω4ω3)εxa3.
  4. When x > a3,

    |U^ε3(x)U(x)|=|U^ε3(x)U4(x)|=|(ω3+ω4)x+2(ω1ω2)a1+2(ω2ω3)a2+(ω3ω4)a32+(xa3)2(ω4ω3)2(xa3)2+ε12ω4x(ω1ω2)a1(ω2ω3)a2(ω3ω4)a3|=(xa3)2+ε12(xa3)+(xa3)22(xa3)2+ε12(ω4ω3)=(xa3)2+ε12(xa3)(xa3)22(xa3)2+ε12(ω4ω3)=(xa3)2+ε12(xa3)2(xa3)2+ε12(xa3)(ω4ω3)=12(xa3)(ω4ω3)ε(xa3)2+ε12(xa3)2+ε12+xa312(xa3)(ω4ω3)ε(xa3)2+ε12(xa3)2+ε12=12(xa3)(ω4ω3)ε(xa3)2+ε12(xa3)(ω4ω3)ε(xa3)2=12(ω4ω3)εxa3.

Appendix 2

The error analysis between the smooth function and the piece-wise linear cost function is as follows:

  1. When 0 < LL1,

    |C^ε1(L)C(L)|=|C^ε1(L)C1(L)|=C1(L)+C2(L)2+(LL1)C2(L)C1(L)2(LL1)2+ε12C1(L)=(LL1)C2(L)C1(L)2(LL1)2+ε12+C2(L)C1(L)2=(C2(L)C1(L))(LL1)2+ε12+LL12(LL1)2+ε12=(C2(L)C1(L))ε2(LL1)2+ε12(LL1)2+ε12+L1L(C2(L)C1(L))ε2(LL1)2+ε12(LL1)2+ε12=(C2(L)C1(L))ε2(LL1)2+ε(C2(L)C1(L))ε2(LL1)2=(LL1)(L1C2C1L2)ε2(LL1)2(L2L1)L1=L1C2C1L22(LL1)(L2L1)L1ε
  2. When L1 < LL2,

    |C^ε2(L)C(L)|=|C^ε2(L)C2(L)|=C2(L)+C3(L)2+(LL2)C3(L)C2(L)2(LL2)2+ε12C2(L)=(LL2)C3(L)C2(L)2(LL2)2+ε12+C3(L)C2(L)2=(C3(L)C2(L))(LL2)2+ε12+LL22(LL2)2+ε12=(C3(L)C2(L))ε2(LL2)2+ε12(LL2)2+ε12+L2L(C3(L)C2(L))ε2(LL2)2+ε12(LL2)2+ε12=(C3(L)C2(L))ε2(LL2)2+ε(C3(L)C2(L))ε2(LL2)2=(LL2)(C3C2)(L2L1)(C2C1)(L3L2)ε(L3L2)(L2L1)2(LL2)2=(C3C2)(L2L1)(C2C1)(L3L2)2(LL2)(L3L2)(L2L1)ε.
  3. When L2 < LL3,

    |C^ε3(L)C(L)|=|C^ε3(L)C3(L)|=C3(L)+C4(L)2+(LL3)C4(L)C3(L)2(LL3)2+ε12C3(L)=(LL3)C4(L)C3(L)2(LL3)2+ε12+C4(L)C3(L)2=(C4(L)C3(L))(LL3)2+ε12+LL32(LL3)2+ε12=(C4(L)C3(L))ε2(LL3)2+ε12(LL3)2+ε12+L3L(C4(L)C3(L))ε2(LL3)2+ε12(LL3)2+ε12=(C4(L)C3(L))ε2(LL3)2+ε(C4(L)C3(L))ε2(LL3)2=(LL3)(C4C3)(L3L2)(C3C2)(L4L3)ε(L4L3)(L3L2)2(LL3)2=(C4C3)(L3L2)(C3C2)(L4L3)2(LL3)(L4L3)(L3L2)ε.
  4. When L > L3,

    |C^ε3(L)C(L)|=|C^ε3(L)C4(L)|=C3(L)+C4(L)2+(LL3)C4(L)C3(L)2(LL3)2+ε12C4(L)=(LL3)C4(L)C3(L)2(LL3)2+ε12C4(L)C3(L)2=(C4(L)C3(L))(LL3)2+ε12+L3L2(LL3)2+ε12=(C4(L)C3(L))ε2(LL3)2+ε12(LL3)2+ε12+LL3(C4(L)C3(L))ε2(LL3)2+ε12(LL3)2+ε12=(C4(L)C3(L))ε2(LL3)2+ε(C4(L)C3(L))ε2(LL3)2=(LL3)(C4C3)(L3L2)(C3C2)(L4L3)ε(L4L3)(L3L2)2(LL3)2=(C4C3)(L3L2)(C3C2)(L4L3)2(LL3)(L4L3)(L3L2)ε.

Received: 2019-03-04
Accepted: 2019-05-16
Published Online: 2019-09-18
Published in Print: 2019-09-25

© 2019 Walter De Gruyter GmbH, Berlin/Boston

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.21078/JSSI-2019-295-22/html
Scroll to top button