Synthesis of Novel Lithium Salts containing Pentafluorophenylamido-based Anions and Investigation of their Thermal and Electrochemical Properties
-
Benedikt Huber
, Thomas Linder , Kristof Hormann , Till Frömling , Jörg Sundermeyer and Bernhard Roling
Abstract
Three novel lithium salts, lithium bis(pentafluorophenyl)amide LiN(Pfp)2, lithium pentafluorphenyl(trifluormethylsulfonyl)imide LiN(Pfp)(Tf) and lithium pentafluorphenyl(nonafluorbutylsulfonyl)imide LiN(Pfp)(Nf) were synthesized and characterized with respect to their thermal and electrochemical properties. LiN(Pfp)2 decomposes at 108 ºC, whereas Li-N(Pfp)(Tf) and Li-N(Pfp)(Nf) show a much higher thermal stability of 307 ºC and 316 ºC, respectively. The ionic conductivity at 100 ºC measured by means of impedance spectroscopy decreases in the order LiN(Pfp)(Tf) > LiN(Tf)2> LiN(Pfp)(Nf). Both, the activation energy and entropy for ion conduction in the new salts are lower than in LiN(Tf)2 (LiTFSI), most likely due to the lower symmetry of the new anions. The electrochemical stability and ionic conductivity of LiN(Pfp)(Tf) and LiN(Pfp)(Nf) solutions (0.1 mol/l) in ethylene carbonate/dimethyl carbonate (1:3 w/w) are slightly lower than those of the LiTFSI solution, but still sufficient for application in lithium ion batteries. The high thermal stability of the novel salts and their stability towards hydrolysis makes them attractive candidates for overcoming the drawbacks of LiPF6-based electrolytes at elevated temperatures.
© by Oldenbourg Wissenschaftsverlag, Marburg, Germany
Articles in the same Issue
- Preface
- Bombardment Induced Potassium Ion Transport Through a Sodium Ion Conductor: Conductivities and Diffusion Profiles
- Diffusion and Cluster Growth of Binary Alloys on Surfaces
- Synthesis of Novel Lithium Salts containing Pentafluorophenylamido-based Anions and Investigation of their Thermal and Electrochemical Properties
- Dual-ion Cells Based on Anion Intercalation into Graphite from Ionic Liquid-Based Electrolytes
- Ionic Transport and Structure in Doped Plastically Crystalline Solids
- Transport and Electromechanical Properties of Stoichiometric Lithium Niobate at High Temperatures
- Low-Temperature DC Conductivity of LiNbO3 Single Crystals
- Self-Diffusion of Lithium in Amorphous Lithium Niobate Layers
- Theoretical Investigation of Migration Pathways for Li Diffusion in h-LiTiS2
- Kinetics of Lithium Intercalation in Titanium Disulfide Single Crystals
- Structural control of ionic conductivity in LiAlSi2O6 and LiAlSi4O10 glasses and single crystals
- Studying Li Dynamics in a Gas-Phase Synthesized Amorphous Oxide by NMR and Impedance Spectroscopy
- Li Ion Dynamics in Al-Doped Garnet-Type Li7La3Zr2O12 Crystallizing with Cubic Symmetry
Articles in the same Issue
- Preface
- Bombardment Induced Potassium Ion Transport Through a Sodium Ion Conductor: Conductivities and Diffusion Profiles
- Diffusion and Cluster Growth of Binary Alloys on Surfaces
- Synthesis of Novel Lithium Salts containing Pentafluorophenylamido-based Anions and Investigation of their Thermal and Electrochemical Properties
- Dual-ion Cells Based on Anion Intercalation into Graphite from Ionic Liquid-Based Electrolytes
- Ionic Transport and Structure in Doped Plastically Crystalline Solids
- Transport and Electromechanical Properties of Stoichiometric Lithium Niobate at High Temperatures
- Low-Temperature DC Conductivity of LiNbO3 Single Crystals
- Self-Diffusion of Lithium in Amorphous Lithium Niobate Layers
- Theoretical Investigation of Migration Pathways for Li Diffusion in h-LiTiS2
- Kinetics of Lithium Intercalation in Titanium Disulfide Single Crystals
- Structural control of ionic conductivity in LiAlSi2O6 and LiAlSi4O10 glasses and single crystals
- Studying Li Dynamics in a Gas-Phase Synthesized Amorphous Oxide by NMR and Impedance Spectroscopy
- Li Ion Dynamics in Al-Doped Garnet-Type Li7La3Zr2O12 Crystallizing with Cubic Symmetry