Bombardment Induced Potassium Ion Transport Through a Sodium Ion Conductor: Conductivities and Diffusion Profiles
-
Karl-Michael Weitzel
Abstract
Ion transport through a Ca30 glass, a sodium ion (Na+) conductor, has been induced by bombardment with a potassium ion (K+) beam. The measurement of back side ion currents as a function of the ion beam kinetic energy by means of the recently developed BIIT (bombardment induced ion transport) approach allows determining the conductivity of the material. Measurement of this conductivity as a function of the temperature allows deriving the activation energy for ion transport as 0.99 eV ± 0.01 eV in perfect agreement with impedance spectroscopy. While the conductivity as well as the activation energy clearly correspond to the bulk property, i.e. the transport of Na+, depth profiling of the glass sample after the BIIT experiment exhibits K+ profiles reaching up to 100 nm into the glass. Ultimately, modeling of the experimental data by means of the Nernst–Planck–Poisson theory provides access to a quantitative understanding of the conductivities and the diffusion profiles under the condition of competing Na+/K+ ion transport.
© by Oldenbourg Wissenschaftsverlag, Marburg, Germany
Articles in the same Issue
- Preface
- Bombardment Induced Potassium Ion Transport Through a Sodium Ion Conductor: Conductivities and Diffusion Profiles
- Diffusion and Cluster Growth of Binary Alloys on Surfaces
- Synthesis of Novel Lithium Salts containing Pentafluorophenylamido-based Anions and Investigation of their Thermal and Electrochemical Properties
- Dual-ion Cells Based on Anion Intercalation into Graphite from Ionic Liquid-Based Electrolytes
- Ionic Transport and Structure in Doped Plastically Crystalline Solids
- Transport and Electromechanical Properties of Stoichiometric Lithium Niobate at High Temperatures
- Low-Temperature DC Conductivity of LiNbO3 Single Crystals
- Self-Diffusion of Lithium in Amorphous Lithium Niobate Layers
- Theoretical Investigation of Migration Pathways for Li Diffusion in h-LiTiS2
- Kinetics of Lithium Intercalation in Titanium Disulfide Single Crystals
- Structural control of ionic conductivity in LiAlSi2O6 and LiAlSi4O10 glasses and single crystals
- Studying Li Dynamics in a Gas-Phase Synthesized Amorphous Oxide by NMR and Impedance Spectroscopy
- Li Ion Dynamics in Al-Doped Garnet-Type Li7La3Zr2O12 Crystallizing with Cubic Symmetry
Articles in the same Issue
- Preface
- Bombardment Induced Potassium Ion Transport Through a Sodium Ion Conductor: Conductivities and Diffusion Profiles
- Diffusion and Cluster Growth of Binary Alloys on Surfaces
- Synthesis of Novel Lithium Salts containing Pentafluorophenylamido-based Anions and Investigation of their Thermal and Electrochemical Properties
- Dual-ion Cells Based on Anion Intercalation into Graphite from Ionic Liquid-Based Electrolytes
- Ionic Transport and Structure in Doped Plastically Crystalline Solids
- Transport and Electromechanical Properties of Stoichiometric Lithium Niobate at High Temperatures
- Low-Temperature DC Conductivity of LiNbO3 Single Crystals
- Self-Diffusion of Lithium in Amorphous Lithium Niobate Layers
- Theoretical Investigation of Migration Pathways for Li Diffusion in h-LiTiS2
- Kinetics of Lithium Intercalation in Titanium Disulfide Single Crystals
- Structural control of ionic conductivity in LiAlSi2O6 and LiAlSi4O10 glasses and single crystals
- Studying Li Dynamics in a Gas-Phase Synthesized Amorphous Oxide by NMR and Impedance Spectroscopy
- Li Ion Dynamics in Al-Doped Garnet-Type Li7La3Zr2O12 Crystallizing with Cubic Symmetry